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What is a primitive set of matrices?

Primitive matrix:
) >0

0099 3
M={0110 = M =
1001
Primitive set (of matrices):
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A primitive set is

a finite set of nonnegative matrices that admits an entrywise positive
product.

@ Introduced by Protasov, Voynov in 2012.



A little bit less than primitivity: scrambling sets

Scrambling set (of matrices):

009\ (3881 8983
M=1106001 {0100y MiMMoMy={g107])>0
0100 0010 0001
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A scrambling set is

a finite set of nonnegative matrices that admits a product with an
entrywise positive column.
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A little bit less than primitivity: scrambling sets

Scrambling set (of matrices):

009\ (3881 8983
M=1106001 {0100y MiMMoMy={g107])>0
0100 0010 0001

—

A scrambling set is

a finite set of nonnegative matrices that admits a product with an
entrywise positive column.

Primitivity = Scrambing
<
o M={My,...My,}, Vi M; has no zero-rows nor zero-columns and
M =¥ ; M; is irreducible, then
Primitivity <  Scrambing



Example I: Labelled directed graphs

D=(V,E):

® 6 o o

V={1,...,n}, neN;

EcVxV;

labels £L={h,...,Im}, meN;

every edge has at least one label (multiple labels allowed).

V={1,2,3,4}
L={h,k}



Example I: Labelled directed graphs

© 3JveV and a sequence of labels /=/; .../, s.t. every node reaches
v following a path labeled by /? Minimal length of /?

V = {1727374}
L={h,h}
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© 3JveV and a sequence of labels /=/; .../, s.t. every node reaches
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Example I: Labelled directed graphs
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Example I: Labelled directed graphs

© 3JveV and a sequence of labels /=/; .../, s.t. every node reaches
v following a path labeled by /? Minimal length of /?

YES iff the set M is scrambling.
/] = length of the shortest product with a positive column.

@ 3 sequence of labels /=/; .../, s.t. every node reaches every
node following a path labeled by /? Minimal length of /7

YES iff the set M is primitive. |/| = length of the shortest positive product.
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Example Il: Discrete time switching systems

M={My,....,Mn}.
Xk+1 = M,'ka M,'k e M
X0 EH%QO
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Example Il: Discrete time switching systems

X1 = My xe  M; e M
X0 € Rgo

r-{(380) 38D}

My Mo

@ 3Ixg € {x,y, z} and sequence of matrices of the system s.t. Ik : xx
reaches R7;7 What is the minimal k?

YES iff the set M is scrambling.
k = length of the shortest product with a positive column.

@ Can we choose a sequence of matrices of the system s.t. 3k : x,
reaches R, for any xg € R]4? What is the minimal k?

YES iff the set is primitive.
k = length of the shortest positive product.




Complexity and bounds on the shortest positive product

Exponent of a primitive set

exp(M)= length of the shortest positive product of the set M.

@ Computing the exponent of a set is NP-hard. [cerencsér, Gusev, Jungers, 2016]

e Asymptotics on the growth-rate of exp(M) w.r.t. the matrix size n:

- MaXamq (eXp(M)) ~ \3/§e” [Gerencsér, Gusev, Jungers, 2016]

- exp(M) < (n® +2n-3)/3 when every matrix of M has neither
ZEero-rows nor ZerO—C0|umnS [Blondel, Jungers, Olshevsky, 2015]



Complexity and bounds on the shortest positive product

Exponent of a primitive set
exp(M)= length of the shortest positive product of the set M.

@ Computing the exponent of a set is NP-hard. [cerencsér, Gusev, Jungers, 2016]

e Asymptotics on the growth-rate of exp(M) w.r.t. the matrix size n:

- maXM(eXp(M)) ~ \3/§e” [Gerencsér, Gusev, Jungers, 2016]
Determining primitivity is decidable but NP-hard

- exp(M) < (n® +2n-3)/3 when every matrix of M has neither
ZEero-rows nor ZerO—C0|umnS [Blondel, Jungers, Olshevsky, 2015]
Determining primitivity is decidable in polynomial time



What is the probability to generate a primitive set? What is their
typical exponent?

@ Random matrix sets:

e Primitivity and shortest positive product
e Scrambling and shortest column-positive product

Can we approximate the exponent of a set?

@ A probabilistic tool for studying primitivity

@ A new bound on the exponent of a class of primitive sets
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typical exponent?

@ Random matrix sets:

e Primitivity and shortest positive product
e Scrambling and shortest column-positive product

Can we approximate the exponent of a set?

@ A probabilistic tool for studying primitivity

@ A new bound on the exponent of a class of primitive sets



Boolean matrix products

The properties of being primitive or scrambling are not influenced by the
magnitude of the positive entries of the matrices.

Every positive entry in a matrix is set to 1.
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Random matrix sets

Fix m = # of matrices of size nx n

1 =1  with probability p = p(n)
’ =0 with probability 1-p
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Random matrix sets

Fix m = # of matrices of size nx n
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Random matrix sets

Fix m = # of matrices of size nx n

10190 soot 9008 =1 with probability p = p(n)
0988) \%888) \9843% -0 with probability 1 - p
m =

Equivalently: m = # of labels, n = # of vertices
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Primitivity of random sets: our result

Bp,(p) = set of m matrices of size nx n

sampled as seen before. {: 1 with prob. p = p(n)

exp(B7.(p))= length of its shortest positive

duck =0 with prob. 1-p
product.
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Primitivity of random sets: our result

Bp.(p) = set of m matrices of size nx n

led before.
sampled as seen before | B _1 with prob. p= p(n)
exp(B,(p))= length of its shortest positive =0 with prob. 1-p
product.
1 if np—logn— +o00
IP’(B,’;(p) is primitive) —{(*) ifnp-logn—>ceR
0 if np—logn— —oco

() e[1-(1-e2) " —me 2 (1-e2) "} 1-(1-e)"] c (0,1)
Furthermore:
o If np—logn— +oo: exp(B,(p)) = O(nlogn) with high probability
o If np—logn— ceR: exp(B],(p)) = O(nlogn) with high probability
conditioned to the fact that every matrix of B/, (p) has
neither zero-rows nor zero-columns




Scrambling property of random sets: our result

Bp.(p) = set of m matrices of size nx n

sampled as seen before. {= 1 with prob. p = p(n)

scr(B,(p))= length of its shortest product ~0  with prob. 1-p
with a positive column.

Then as n — oo

1 if np—logn— +oco
P(Bp,(p) is scrambling) — { (+) if np—logn—>ceR
0 if np—logn— —o0

() € [1—(1—e’2e_c)m—me’2e_c(1—e’2e_c)mfl, 1-(1-e)"] < (0,1)
Furthermore:
o If np—logn— +oo: scr(B),(p)) = O(nlogn) with high probability
o If np—logn— ceR: scr(B],(p)) = O(nlogn) with high probability
conditioned to the fact that every matrix of B),(p) has
neither zero-rows nor zero-columns




What is the probability to generate a primitive set? What is their
typical exponent?

@ Random matrix sets:

e Primitivity and shortest positive product
e Scrambling and shortest column-positive product

Can we approximate the exponent of a set?

@ A probabilistic tool for studying primitivity

@ A new bound on the exponent of a class of primitive sets



Primitivity as a 2-player game

M={My,...,Mpn} a set of nx n matrices with neither zero-rows nor
zero-columns (NZ matrices).

The directed graph D = (V,€):

o V={ve{0,1}":v=£(0,...,0)}
@ v > w labeled by M, if vIMy = w.

2090 2600 - -
Mi=15300] - Ma=(1807 (s {e1, e, €3, es}=canonical basis
0010 0010
M:
€y 1001 —=m—0011 1100 0111
e e 0101 0110 1011 My

1 3
My, M:
Mzw% //,1 M sz/; . T 1,M2

€ —>1010—M—>1101¢—*—>1110——> 1111



Primitivity as a 2-player game

M={My,...,Mpn} set of NZ-matrices. Fix t > 1 integer.

The game's rules

@ Player B secretly chooses an initial vertex e; € {e1,...,ep}.
@ Player A chooses a sequence of at most t matrices in M.

Q Let w=e¢ M --M;,. A component of w is chosen uniformly at
random: |f it is =1 Player A wins, otherwise Player B wins.

M
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M={My,...,Mpn} set of NZ-matrices. Fix t > 1 integer.
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@ Player A chooses a sequence of at most t matrices in M.
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Primitivity as a 2-player game

M={My,...,Mp} set of NZ-matrices. Fix t > 1 integer.

The game's rules

@ Player B secretly chooses an initial vertex e; € {e1,...,ep}.
@ Player A chooses a sequence of at most t matrices in M.

Q Let w=e¢ M --M;,. A component of w is chosen uniformly at
random: |f it is =1 Player A wins, otherwise Player B wins.

Player B: es
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Primitivity as a 2-player game

M={My,...,Mp} set of NZ-matrices. Fix t > 1 integer.

The game's rules

@ Player B secretly chooses an initial vertex e; € {e1,...,ep}.
@ Player A chooses a sequence of at most t matrices in M.

Q Let w=e¢ M --M;,. A component of w is chosen uniformly at
random: |f it is =1 Player A wins, otherwise Player B wins.

Player B: €4 Player A: M1M2M2M1 M2M2M1 >0 (t = 7)
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Primitivity as a 2-player game

M={My,...,Mp} set of NZ-matrices. Fix t > 1 integer.

The game's rules

@ Player B secretly chooses an initial vertex e; € {e1,...,ep}.
@ Player A chooses a sequence of at most t matrices in M.

Q Let w=e¢ M --M;,. A component of w is chosen uniformly at
random: |f it is =1 Player A wins, otherwise Player B wins.

Player B: e4 Player A: My MyMyMyMyMoMy > 0(t=7) Player A wins!

M

/Ml\g/ \\O
VA

1010 —M—>1101¢—*—>1110—H—>1111

0111



Primitivity as a 2-player game

M={My,...,Mp} set of NZ-matrices. Fix t > 1 integer.

The game's rules

@ Player B secretly chooses an initial vertex e; € {e1,...,ep}.
@ Player A chooses a sequence of at most t matrices in M.

Q Let w=e¢ M --M;,. A component of w is chosen uniformly at
random: |f it is =1 Player A wins, otherwise Player B wins.

Player B: e3 Player A: My MyMyMyMyMoMy > 0(t=7) Player A wins!
Independently of what Player B plays!
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Primitivity as a 2-player game

M={My,...,Mp} set of NZ-matrices. Fix t > 1 integer.

The game's rules

@ Player B secretly chooses an initial vertex e; € {e1,...,ep}.
@ Player A chooses a sequence of at most t matrices in M.

Q Let w=e¢ M --M;,. A component of w is chosen uniformly at
random: |f it is =1 Player A wins, otherwise Player B wins.

Player B: e, Player A: My MyMyMyMyMoMy > 0(t=7) Player A wins!
Independently of what Player B plays!
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Primitivity as a 2-player game

M={My,...,Mp} set of NZ-matrices. Fix t > 1 integer.

The game's rules

@ Player B secretly chooses an initial vertex e; € {e1,...,ep}.
@ Player A chooses a sequence of at most t matrices in M.

Q Let w=e¢ M --M;,. A component of w is chosen uniformly at
random: |f it is =1 Player A wins, otherwise Player B wins.

Player B: e; Player A: My MyMyMyMyMoMy > 0(t=7) Player A wins!
Independently of what Player B plays!
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The Synchronizing Probability Function for primitive sets

The probability that Player A wins if they both play optimally is:

e
K (t) = mi T M- oM (_)
.M() ;ﬁl{Mvﬂﬁéﬂﬁtp ! U] o

ple=1

where p is the initial distribution of player B, M=! the set of the products
of length <t and e=(1,1,...,1).




The Synchronizing Probability Function for primitive sets

The probability that Player A wins if they both play optimally is:

Kar(t) = min { max p" M;--M; (E)}
peR* n

M,'ln..-M,'/EMSt

ple=1

1 1 1
08 0.8 0.8
0.6 0.6 0.6

0.4 0.4
0.4
exp 0.2 exp 0.2 exp

0 1= . < > < )

0 2 4 6 0 2 4 6 8 0 5 10

Properties

o Kn(t) is nondecreasing, Kp(t) =1 < M is primitive.
o ming{Kp(t) =1} = exp(M).

It captures the speed at which a set reaches its first positive product



The Synchronizing Probability Function for primitive sets

The probability that Player A wins if they both play optimally is:

e
K (t) = mi T M- oM (_)
.M() ;ﬁl{Mvﬂﬁéﬂﬁtp ! U] o

ple=1

where p is the initial distribution of player B, M=! the set of the products
of length <t and e=(1,1,...,1)
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The approximated SPF: K(t)

The probability that Player A wins if they both play optimally is:

_ e
Kaq(t) = min max e T MM | =
M( ) €1yeeey €n M,‘l-.‘.‘M;IGMSt ! 1 ! n

where £ = {ey,..., ey} is the canonical basis.

o K(t)>K(t)



The approximated SPF: K(t)

The probability that Player A wins if they both play optimally is:

K (t) = min

where € = {ey,.

€1,.--,€n

L

max
iy My € Mt

e,'TMil"'Mi/ (E)}
n

.., €n} is the canonical basis.

o K(t)>K(t)

0.8

0.6

04

02

—_ / 4 =
K / f K—> K~/ f
4 0.8 A= 0.8 =g
/ exp / / ex
A ex / P
, p ;
/ 0.6 - 06 P
/ ;
/ ;
fa 04 « 04 IS
/ /
/
02 02
0 2 4 6 0 2 4 6 8 0 s 10

Proposition

If min{t: Kr(t) =1} < B(n) then exp(M) <2B(n).




The approximated SPF: K(t)

Linear programming formulation

Kam(t) = rlu? - st efe=1
e >0

where the j-th column of H; is the vector A;e with A; the i-th element of
M=t Pyc{ey,...,e,} is the set of its optimal solutions.

i P5 v
Lim
0.8 A 0.8 A=
// P3 /.'
// >1/n \ //
0.6 AT & 0.6 /Q: - S 4
> A
/ / -
& 4 < n-1 if IPtl<n|
0.4 4 I 0.4 <n(n-1)/2 if IPti=n
7 >1/n
0.24----- 0.24-=-=-
<n-1
0 2 3 4 5 6 7 0 3 4 5 6 7

= min{t: Ky (t) =1} < n(n-1)2/2

= exp(M) < n(n-1)?
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New upper bound for a class of primitive sets

For each matrix M; € M there exists a permutation matrix P; s.t.
M; > P; entrywise.
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Proposition

exp(M) < (n® - n?+2n-8)/4 for any set M that fulfils the assumption.
— better than the known one! but still cubic...
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For any NZ-primitive set M of matrix size nx n, exp(M) = O(n?).




Thank you! ...questions?
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