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What is a primitive set of matrices?

Primitive matrix:

M = (
1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1

) ⇒ M3 = (
2 2 2 2
2 2 2 2
1 2 3 2
3 2 1 2

) > 0

Primitive set (of matrices):

M=
⎧⎪⎪⎨⎪⎪⎩
(

0 0 0 1
1 0 1 0
0 1 0 0
0 0 1 0

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M1

,(
0 1 0 0
1 0 0 0
1 0 0 1
0 0 1 0

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M2

⎫⎪⎪⎬⎪⎪⎭
, M1M2M2M1M2M2M1 = (

1 1 2 1
2 1 3 1
1 1 1 1
2 1 2 1

) > 0

A primitive set is

a finite set of nonnegative matrices that admits an entrywise positive
product.

Introduced by Protasov, Voynov in 2012.

2 / 25



What is a primitive set of matrices?

Primitive matrix:

M = (
1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1

) ⇒ M3 = (
2 2 2 2
2 2 2 2
1 2 3 2
3 2 1 2

) > 0

Primitive set (of matrices):

M=
⎧⎪⎪⎨⎪⎪⎩
(

0 0 0 1
1 0 1 0
0 1 0 0
0 0 1 0

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M1

,(
0 1 0 0
1 0 0 0
1 0 0 1
0 0 1 0

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M2

⎫⎪⎪⎬⎪⎪⎭
, M1M2M2M1M2M2M1 = (

1 1 2 1
2 1 3 1
1 1 1 1
2 1 2 1

) > 0

A primitive set is

a finite set of nonnegative matrices that admits an entrywise positive
product.

Introduced by Protasov, Voynov in 2012.

2 / 25



A little bit less than primitivity: scrambling sets

Scrambling set (of matrices):

M=
⎧⎪⎪⎨⎪⎪⎩
(

1 0 0 0
0 1 0 1
0 0 0 1
0 1 0 0

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M1

,(
0 0 0 1
0 0 0 1
0 1 0 0
0 0 1 0

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M2

⎫⎪⎪⎬⎪⎪⎭
, M1M2M2M1 = (

0 0 0 1
0 1 0 2
0 1 0 1
0 0 0 1

)> 0

A scrambling set is

a finite set of nonnegative matrices that admits a product with an
entrywise positive column.

Primitivity ⇒ Scrambing

⇍

M = {M1, . . .Mm}, ∀i Mi has no zero-rows nor zero-columns and
M = ∑i Mi is irreducible, then

Primitivity ⇔ Scrambing
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Example I: Labelled directed graphs

D=(V ,E) ∶

V = {1, . . . ,n}, n ∈ N;

E ⊆ V ×V ;

labels L = {l1, . . . , lm}, m ∈ N;

every edge has at least one label (multiple labels allowed).

1 start

2 start3start

4start

1

23

4

l2l1, l2

l1

l1

l2
l2

l1

l1, l2

V = {1,2,3,4}
L = {l1, l2}

l1l2l2l1l2l2l1
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Example I: Labelled directed graphs

1 ∃v∈V and a sequence of labels l = li1 . . . lik s.t. every node reaches
v following a path labeled by l? Minimal length of l?

YES iff the set M is scrambling.
∣l ∣ = length of the shortest product with a positive column.

2 ∃ sequence of labels l = li1 . . . lik s.t. every node reaches every
node following a path labeled by l? Minimal length of l?

YES iff the setM is primitive. ∣l ∣ = length of the shortest positive product.
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Example II: Discrete time switching systems

M= {M1, . . . ,Mm}.

⎧⎪⎪⎨⎪⎪⎩

xk+1 =Mikxk Mik ∈ M
x0 ∈ Rn

≥0

M=
⎧⎪⎪⎨⎪⎪⎩
( 0 1 0

1 0 0
0 0 1

)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

M1

, ( 1 0 1
0 0 1
0 1 0

)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

M2

⎫⎪⎪⎬⎪⎪⎭

Can I reach R>0?
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reaches Rn

>0 for any x0 ∈ Rn
≥0? What is the minimal k?

YES iff the set is primitive.
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YES iff the set M is scrambling.
k = length of the shortest product with a positive column.

2 Can we choose a sequence of matrices of the system s.t. ∃k ∶ xk
reaches Rn

>0 for any x0 ∈ Rn
≥0? What is the minimal k?

YES iff the set is primitive.
k = length of the shortest positive product.
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Complexity and bounds on the shortest positive product

Exponent of a primitive set

exp(M)= length of the shortest positive product of the set M.

Computing the exponent of a set is NP-hard. [Gerencsér, Gusev, Jungers, 2016]

Asymptotics on the growth-rate of exp(M) w.r.t. the matrix size n:

- maxM(exp(M)) ∼ 3
√

3en [Gerencsér, Gusev, Jungers, 2016]

Determining primitivity is decidable but NP-hard

- exp(M) ≤ (n3 + 2n − 3)/3 when every matrix of M has neither
zero-rows nor zero-columns [Blondel, Jungers, Olshevsky, 2015]

Determining primitivity is decidable in polynomial time
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Boolean matrix products

The properties of being primitive or scrambling are not influenced by the
magnitude of the positive entries of the matrices.

Assumption

Every positive entry in a matrix is set to 1.

M = (
3 0 1 2
2 0 0 0
0 4 0 1
2 0 2 0

) ⇒ (
1 0 1 1
1 0 0 0
0 1 0 1
1 0 1 0

) , M1M2M2M1M2M2M1 = (
1 1 2 1
2 1 3 1
1 1 1 1
2 1 2 1

) ⇒ (
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)
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Random matrix sets

Fix m = # of matrices of size n × n

(
1 0

1 0
1 1 1 0
0 0 0 1
0 1 0 0

) ,

(
1 0 0 1
0 0 1 0
0 1 1 0
1 0 0 0

), (
0 0 0 1
1 1 0 0
0 0 1 1
1 0 0 0

)

⎧⎪⎪⎨⎪⎪⎩

= 1 with probability p = p(n)
= 0 with probability 1 − p

m = 3,n = 4

Equivalently: m = # of labels, n = # of vertices

l1

l1

l1

l1

l1

l2 l2

l2

l2

l2

l2

l3
l3

l3l3

l3
l4 l4l4

l4

l4
l4

l4

m = 4,n = 15
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Primitivity of random sets: our result

Bnm(p) = set of m matrices of size n × n
sampled as seen before.

exp(Bnm(p))= length of its shortest positive
product.

⎧⎪⎪⎨⎪⎪⎩

= 1 with prob. p = p(n)
= 0 with prob. 1 − p

Then as n →∞:

P(Bnm(p) is primitive) Ð→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if np − log n → +∞
if np − log n → c ∈ R

0 if np − log n → −∞

Furthermore:

If np − log n → +∞: exp(Bnm(p)) = O(n log n) with high probability

If np − log n → c ∈ R: exp(Bnm(p)) = O(n log n) with high probability
conditioned to the fact that every matrix of Bnm(p) has
neither zero-rows nor zero-columns
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Scrambling property of random sets: our result

Bnm(p) = set of m matrices of size n × n
sampled as seen before.

scr(Bnm(p))= length of its shortest product
with a positive column.

⎧⎪⎪⎨⎪⎪⎩

= 1 with prob. p = p(n)
= 0 with prob. 1 − p

Then as n →∞:

P(Bnm(p) is scrambling) Ð→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if np − log n → +∞
(∗) if np − log n → c ∈ R
0 if np − log n → −∞

(∗) ∈ [1−(1−e−2e−c)m−me−2e−c(1−e−2e−c)m−1
,1−(1−e−e−c)m] ⊂ (0,1)

Furthermore:

If np − log n → +∞: scr(Bnm(p)) = O(n log n) with high probability

If np − log n → c ∈ R: scr(Bnm(p)) = O(n log n) with high probability
conditioned to the fact that every matrix of Bnm(p) has
neither zero-rows nor zero-columns
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Primitivity as a 2-player game

M= {M1, . . . ,Mm} a set of n × n matrices with neither zero-rows nor
zero-columns (NZ matrices).

The directed graph D = (V ,E):
V = {v ∈ {0,1}n ∶ v ≠ (0, . . . ,0)}
v → w labeled by Mk if vMk = w.

{M1 = (
0 0 0 1
1 0 1 0
0 1 0 0
0 0 1 0

) ,M2 = (
0 1 0 0
1 0 0 0
1 0 0 1
0 0 1 0

)} , {e1, e2, e3, e4}=canonical basis

e1

e2

e4

e3

1 0 1 0

1 0 0 1

0 1 0 1

1 1 0 1

0 0 1 1

0 1 1 0

1 1 1 0

1 1 0 0

1 0 1 1

1 1 1 1

0 1 1 1

M1

M2
M2

M1

M1,M2

M1

M2

M1

M2

M1

M2

M1,M2 M1

M2

M1 M2

M1

M2

M1

M2

M1 M1,M2

M1,M2

M2

M1
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Primitivity as a 2-player game

M= {M1, . . . ,Mm} set of NZ-matrices. Fix t ≥ 1 integer.

The game’s rules

1 Player B secretly chooses an initial vertex ei ∈ {e1, . . . , en}.

2 Player A chooses a sequence of at most t matrices in M.

3 Let w = eTi Mi1⋯Mit . A component of w is chosen uniformly at
random: if it is = 1 Player A wins, otherwise Player B wins.

Player B: e4

Player A: M1M2M2 (t = 3)

Independently of what
Player B plays!

e1

e2

e4

e3

1 0 1 0

1 0 0 1

0 1 0 1

1 1 0 1

0 0 1 1

0 1 1 0

1 1 1 0

1 1 0 0
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1 1 1 1
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M1

M2
M2

M1
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M1

M2

M1

M2

M1

M2
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M2

M1 M2

M1

M2

M1

M2

M1 M1,M2

M1,M2

M2
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The Synchronizing Probability Function for primitive sets

The probability that Player A wins if they both play optimally is:

KM(t) = min
p∈R+
pT e=1

{ max
Mi1
⋅...⋅Mil

∈M≤t
pTMi1⋯Mil (

e

n
)}

where p is the initial distribution of player B, M≤t the set of the products
of length ≤ t and e = (1,1, . . . ,1).

Properties

KM(t) is nondecreasing, KM(t) = 1 ⇔ M is primitive.

mint{KM(t) = 1} = exp(M).

It captures the speed at which a set reaches its first positive product
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The approximated SPF: K̄(t)
The probability that Player A wins if they both play optimally is:

K̄M(t) = min
e1,...,en

{ max
Mi1
⋅...⋅Mil

∈M≤t
ei

TMi1⋯Mil (
e

n
)}

where E = {e1, . . . , en} is the canonical basis.

K̄(t) ≥ K(t)

Proposition

If min{t ∶ K̄M(t) = 1} ≤ B(n) then exp(M) ≤ 2B(n).
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The approximated SPF: K̄(t)
Linear programming formulation

K̄M(t) = min
ei ,k

k

n
s. t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

eTi Ht ≤ keT

eTi e = 1

ei ≥ 0

where the i-th column of Ht is the vector Aie with Ai the i-th element of
M≤t . Pt ⊆ {e1, . . . , en} is the set of its optimal solutions.

⇒ min{t ∶ K̄M(t) = 1} ≤ n(n − 1)2/2 ⇒ exp(M) ≤ n(n − 1)2 / 22 / 25



New upper bound for a class of primitive sets

Assumption

For each matrix Mi ∈ M there exists a permutation matrix Pi s.t.
Mi ≥ Pi entrywise.

Proposition

exp(M) ≤ (n3 − n2 + 2n − 8)/4 for any set M that fulfils the assumption.
Ð→ better than the known one! but still cubic...
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Future work

Conjecture

For any NZ-primitive set M of matrix size n × n, exp(M) = O(n2).
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Thank you! ...questions?

C. Catalano, R. M. Jungers, On randomized generation of slowly
synchronizing automata. Mathematical Foundations of Computer Science,
2018, 117, 48:1–48:16.

C. Catalano, R. M. Jungers, The synchronizing probability function of
primitive sets of matrices. Developments in Language Theory, 2018, 194-205.

C. Catalano, R. M. Jungers, Random primitive sets may generate slowly
synchronizing automata. Soon on Arxiv.
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