Primitivity of random matrix sets and the synchronizing probability function

Costanza Catalano

(joint work with Raphaël M. Jungers (UCLouvain))

Gran Sasso Scince Institute, L'Aquila, Italy

RP'18, Marseille, September 25th 2018

What is a **primitive** set of matrices?

Primitive matrix:

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \quad \Rightarrow \quad M^{3} = \begin{pmatrix} 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 2 \\ 3 & 2 & 1 & 2 \end{pmatrix} > 0$$

What is a **primitive** set of matrices?

Primitive matrix:

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \quad \Rightarrow \quad M^3 = \begin{pmatrix} 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 2 \\ 3 & 2 & 1 & 2 \end{pmatrix} > 0$$

Primitive set (of matrices):

$$\mathcal{M} = \left\{ \underbrace{\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline M_1 \end{pmatrix}}_{M_1}, \underbrace{\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \hline M_2 \end{pmatrix}}_{M_2} \right\}, \quad M_1 M_2 M_2 M_1 M_2 M_2 M_1 = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 2 & 1 \end{pmatrix} > 0$$

A primitive set is

a finite set of nonnegative matrices that admits an entrywise **positive product**.

• Introduced by Protasov, Voynov in 2012.

A little bit less than primitivity: scrambling sets

Scrambling set (of matrices):

$$\mathcal{M} = \left\{ \underbrace{\left(\begin{smallmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{smallmatrix} \right)}_{\mathcal{M}_1}, \underbrace{\left(\begin{smallmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{smallmatrix} \right)}_{\mathcal{M}_2} \right\},$$

$$M_1 M_2 M_2 M_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} > 0$$

A scrambling set is

a finite set of nonnegative matrices that admits a product with an entrywise **positive column**.

A little bit less than primitivity: scrambling sets

Scrambling set (of matrices):

$$\mathcal{M} = \left\{ \underbrace{\left(\begin{smallmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{smallmatrix} \right)}_{\mathcal{M}_1}, \underbrace{\left(\begin{smallmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{smallmatrix} \right)}_{\mathcal{M}_2} \right\},$$

$$M_1 M_2 M_2 M_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} > 0$$

A scrambling set is

a finite set of nonnegative matrices that admits a product with an entrywise **positive column**.

$$\mathsf{Primitivity} \quad \Rightarrow \quad \mathsf{Scrambing}$$

#

A little bit less than primitivity: scrambling sets

Scrambling set (of matrices):

$$\mathcal{M} = \left\{ \underbrace{\left(\begin{smallmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{smallmatrix} \right)}_{\mathcal{M}_1}, \underbrace{\left(\begin{smallmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{smallmatrix} \right)}_{\mathcal{M}_2} \right\},$$

$$M_1 M_2 M_2 M_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} > 0$$

A scrambling set is

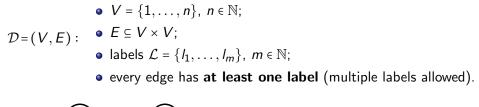
a finite set of nonnegative matrices that admits a product with an entrywise **positive column**.

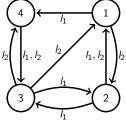
$$\begin{array}{rcl} \mathsf{Primitivity} & \Rightarrow & \mathsf{Scrambing} \end{array}$$

#

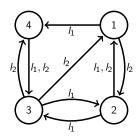
• $\mathcal{M} = \{M_1, \dots, M_m\}, \forall i \ M_i \text{ has no zero-rows nor zero-columns and } M = \sum_i M_i \text{ is irreducible, then}$

Primitivity ⇔ Scrambing



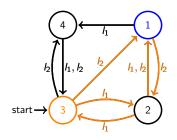


$$V = \{1, 2, 3, 4\}$$
$$\mathcal{L} = \{l_1, l_2\}$$

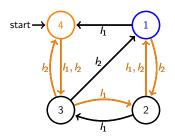


$$V = \{1, 2, 3, 4\}$$

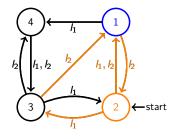
$$\mathcal{L} = \{l_1, l_2\}$$



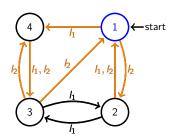
$$V = \{1, 2, 3, 4\}$$
$$\mathcal{L} = \{l_1, l_2\}$$
$$l_1 l_2 l_2 l_1 l_2 l_2 l_1$$



$$V = \{1, 2, 3, 4\}$$
$$\mathcal{L} = \{l_1, l_2\}$$
$$l_1 l_2 l_2 l_1 l_2 l_2 l_1$$



$$V = \{1, 2, 3, 4\}$$
$$\mathcal{L} = \{l_1, l_2\}$$
$$l_1 l_2 l_2 l_1 l_2 l_2 l_1$$

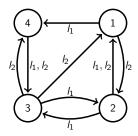


$$V = \{1, 2, 3, 4\}$$

$$\mathcal{L} = \{l_1, l_2\}$$

$$l_1 l_2 l_2 l_1 l_2 l_2 l_1$$

Image System System



$$V = \{1, 2, 3, 4\}$$
$$\mathcal{L} = \{l_1, l_2\}$$
$$l_1 l_2 l_2 l_1 l_2 l_2 l_1$$

Image of the sequence of labels *l* = *l*_{i1} ... *l*_{ik} s.t. every node reaches v following a path labeled by *l*? Minimal length of *l*?

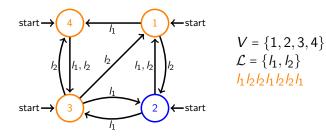


Image of the sequence of labels *l* = *l*_{i1} ... *l*_{ik} s.t. every node reaches v following a path labeled by *l*? Minimal length of *l*?

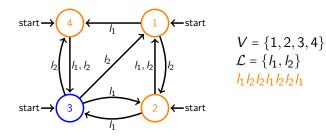


Image of the sequence of labels *l* = *l*_{i1} ... *l*_{ik} s.t. every node reaches v following a path labeled by *l*? Minimal length of *l*?

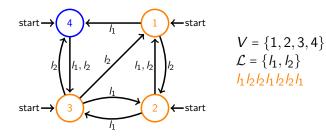
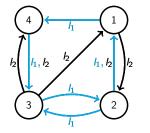


Image Structure in the sequence of labels *l* = *l*_{i1} ... *l*_{ik} s.t. every node reaches v following a path labeled by *l*? Minimal length of *l*?

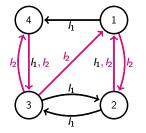
2 \exists sequence of labels $l = l_{i_1} \dots l_{i_k}$ s.t. every node reaches every node following a path labeled by *l*? Minimal length of *l*?



$$I_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Image Structure in the sequence of labels *l* = *l*_{i1} ... *l*_{ik} s.t. every node reaches v following a path labeled by *l*? Minimal length of *l*?

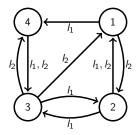
2 \exists sequence of labels $l = l_{i_1} \dots l_{i_k}$ s.t. every node reaches every node following a path labeled by *l*? Minimal length of *l*?



$$I_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} I_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Image Structure in the sequence of labels *l* = *l*_{i1} ... *l*_{ik} s.t. every node reaches v following a path labeled by *l*? Minimal length of *l*?

2 \exists sequence of labels $l = l_{i_1} \dots l_{i_k}$ s.t. every node reaches every node following a path labeled by *l*? Minimal length of *l*?

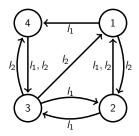


$$I_{1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} I_{2} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
$$\mathcal{M} = \{I_{1}, I_{2}\}$$

Image of the sequence of labels *l* = *l*_{i1} ... *l*_{ik} s.t. every node reaches v following a path labeled by *l*? Minimal length of *l*?

YES iff the set \mathcal{M} is scrambling.

|l| = length of the shortest product with a positive column.



$$I_{1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} I_{2} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
$$\mathcal{M} = \{I_{1}, I_{2}\}$$

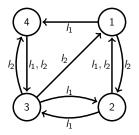
Image of the sequence of labels *l* = *l*_{i1} ... *l*_{ik} s.t. every node reaches v following a path labeled by *l*? Minimal length of *l*?

YES iff the set \mathcal{M} is scrambling.

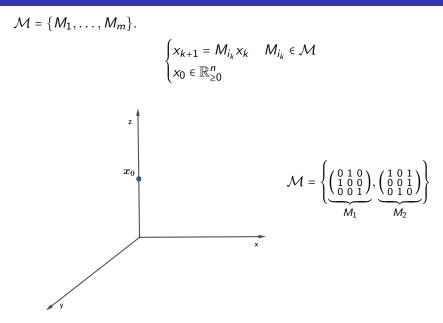
|l| = length of the shortest product with a positive column.

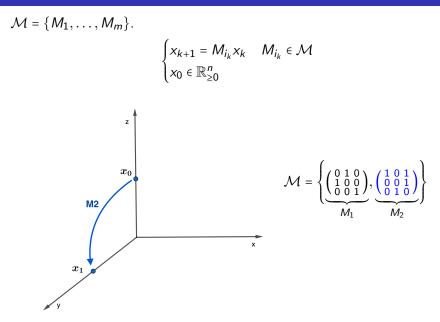
② ∃ sequence of labels *l* = *l*_{i1} ... *l*_{ik} s.t. every node reaches every node following a path labeled by *l*? Minimal length of *l*?

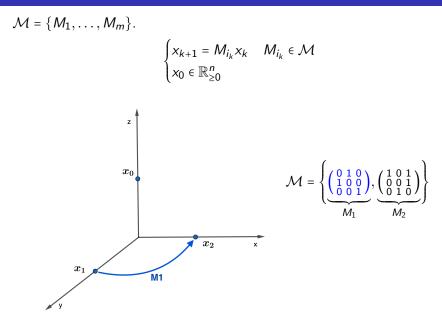
YES iff the set \mathcal{M} is primitive. |I| = length of the shortest positive product.

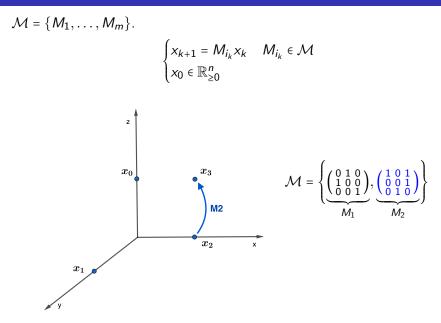


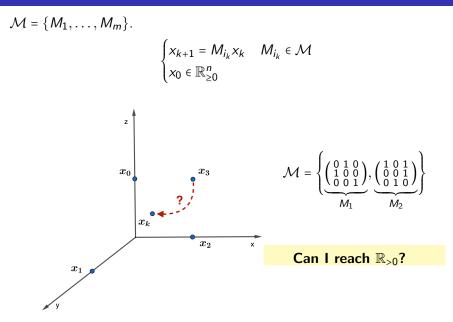
$$I_{1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} I_{2} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
$$\mathcal{M} = \{I_{1}, I_{2}\}$$

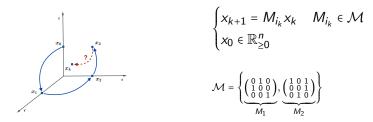




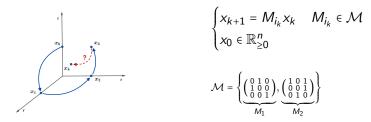






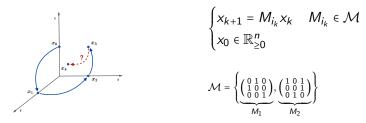


● $\exists x_0 \in \{x, y, z\}$ and sequence of matrices of the system s.t. $\exists k : x_k$ reaches $\mathbb{R}^n_{\geq 0}$? What is the minimal k?



● $\exists x_0 \in \{x, y, z\}$ and sequence of matrices of the system s.t. $\exists k : x_k$ reaches $\mathbb{R}^n_{\geq 0}$? What is the minimal k?

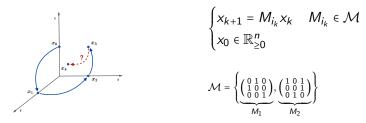
2 Can we choose a sequence of matrices of the system s.t. $\exists k : x_k$ reaches $\mathbb{R}^n_{>0}$ for any $x_0 \in \mathbb{R}^n_{\geq 0}$? What is the minimal k?



● $\exists x_0 \in \{x, y, z\}$ and sequence of matrices of the system s.t. $\exists k : x_k$ reaches $\mathbb{R}^n_{\leq 0}$? What is the minimal k?

YES iff the set \mathcal{M} is scrambling. k = length of the shortest product with a positive column.

2 Can we choose a **sequence of matrices** of the system s.t. $\exists k : x_k$ reaches $\mathbb{R}_{>0}^n$ for any $x_0 \in \mathbb{R}_{\geq 0}^n$? What is the **minimal** k?



● $\exists x_0 \in \{x, y, z\}$ and sequence of matrices of the system s.t. $\exists k : x_k$ reaches $\mathbb{R}_{>0}^n$? What is the minimal k?

YES iff the set M is scrambling. k =length of the shortest product with a positive column.

2 Can we choose a **sequence of matrices** of the system s.t. $\exists k : x_k$ reaches $\mathbb{R}_{\geq 0}^n$ for any $x_0 \in \mathbb{R}_{\geq 0}^n$? What is the minimal k?

YES iff the set is primitive.

k =length of the shortest positive product.

Exponent of a primitive set

 $exp(\mathcal{M}) = length$ of the shortest positive product of the set \mathcal{M} .

- Computing the exponent of a set is NP-hard. [Gerencsér, Gusev, Jungers, 2016]
- Asymptotics on the growth-rate of $exp(\mathcal{M})$ w.r.t. the matrix size *n*:
 - $\max_{\mathcal{M}}(exp(\mathcal{M})) \sim \sqrt[3]{3}e^n$ [Gerencsér, Gusev, Jungers, 2016]
 - $exp(\mathcal{M}) \leq (n^3 + 2n 3)/3$ when every matrix of \mathcal{M} has neither zero-rows nor zero-columns [Blondel, Jungers, Olshevsky, 2015]

Exponent of a primitive set

 $exp(\mathcal{M}) = length$ of the shortest positive product of the set \mathcal{M} .

- Computing the exponent of a set is NP-hard. [Gerencsér, Gusev, Jungers, 2016]
- Asymptotics on the growth-rate of $exp(\mathcal{M})$ w.r.t. the matrix size *n*:
 - $\max_{\mathcal{M}}(exp(\mathcal{M})) \sim \sqrt[3]{3}e^n$ [Gerencsér, Gusev, Jungers, 2016] Determining primitivity is decidable but **NP-hard**
 - $exp(\mathcal{M}) \leq (n^3 + 2n 3)/3$ when every matrix of \mathcal{M} has neither zero-rows nor zero-columns [Blondel, Jungers, Olshevsky, 2015] Determining primitivity is decidable in **polynomial** time

What is the probability to generate a primitive set? What is their typical exponent?

- Random matrix sets:
 - Primitivity and shortest positive product
 - Scrambling and shortest column-positive product

Can we approximate the exponent of a set?

- A probabilistic tool for studying primitivity
- A new bound on the exponent of a class of primitive sets

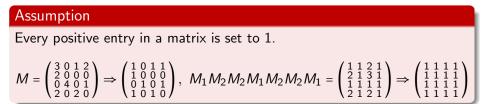
What is the probability to generate a primitive set? What is their typical exponent?

- Random matrix sets:
 - Primitivity and shortest positive product
 - Scrambling and shortest column-positive product

Can we approximate the exponent of a set?

- A probabilistic tool for studying primitivity
- A new bound on the exponent of a class of primitive sets

The properties of being primitive or scrambling are **not** influenced by the **magnitude** of the **positive** entries of the matrices.



Random matrix sets

Fix m = # of matrices of size $n \times n$

1
),
$$\begin{cases} = 1 & \text{with probability } p = p(n) \\ = 0 & \text{with probability } 1 - p \end{cases}$$

Fix m = # of matrices of size $n \times n$

$$\begin{pmatrix} 1 & 0 \\ & & \end{pmatrix}, \qquad \begin{cases} = 1 & \text{with probability } p = p(n) \\ = 0 & \text{with probability } 1 - p \end{cases}$$

Fix m = # of matrices of size $n \times n$

$$\begin{cases} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{cases}, \qquad \qquad \begin{cases} = 1 & \text{with probability } p = p(n) \\ = 0 & \text{with probability } 1 - p \end{cases}$$

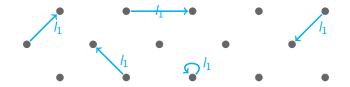
Fix m = # of matrices of size $n \times n$

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad \begin{cases} = 1 & \text{with probability } p = p(n) \\ = 0 & \text{with probability } 1 - p \end{cases}$$

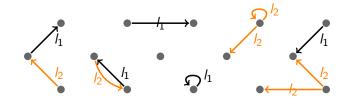
Fix
$$m = \#$$
 of matrices of size $n \times n$
 $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, $\begin{cases} = 1 & \text{with probability } p = p(n) \\ = 0 & \text{with probability } 1 - p \\ m = 3, n = 4 \end{cases}$

Fix
$$m = \#$$
 of matrices of size $n \times n$
 $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ $\begin{cases} = 1 & \text{with probability } p = p(n) \\ = 0 & \text{with probability } 1 - p \\ m = 3, n = 4 \end{cases}$

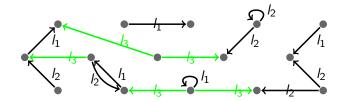
Fix
$$m = \#$$
 of matrices of size $n \times n$
 $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ = 1 with probability $p = p(n)$
 $= 0$ with probability $1 - p$
 $m = 3, n = 4$



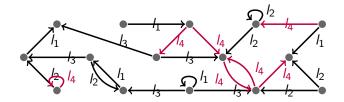
Fix
$$m = \#$$
 of matrices of size $n \times n$
 $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ = 1 with probability $p = p(n)$
 $= 0$ with probability $1 - p$
 $m = 3, n = 4$



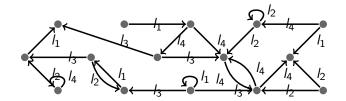
Fix
$$m = \#$$
 of matrices of size $n \times n$
 $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, $\begin{cases} = 1 & \text{with probability } p = p(n) \\ = 0 & \text{with probability } 1 - p \\ m = 3, n = 4 \end{cases}$



Fix
$$m = \#$$
 of matrices of size $n \times n$
 $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, $\begin{cases} = 1 & \text{with probability } p = p(n) \\ = 0 & \text{with probability } 1 - p \\ m = 3, n = 4 \end{cases}$



Fix
$$m = \#$$
 of matrices of size $n \times n$
 $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, $\begin{cases} = 1 & \text{with probability } p = p(n) \\ = 0 & \text{with probability } 1 - p \\ m = 3, n = 4 \end{cases}$



$$m = 4, n = 15$$

Primitivity of random sets: our result

 $\mathcal{B}_{m}^{n}(\mathbf{p}) = \text{set of } m \text{ matrices of size } n \times n \text{ sampled as seen before.}$

 $\exp(\mathcal{B}_m^n(p)) =$ length of its shortest positive product.

$$\begin{cases} = 1 & \text{with prob. } p = p(n) \\ = 0 & \text{with prob. } 1 - p \end{cases}$$

Primitivity of random sets: our result

 $\mathcal{B}_{\mathbf{m}}^{\mathbf{n}}(\mathbf{p}) = \text{set of } m \text{ matrices of size } n \times n \text{ sampled as seen before.}$

 $\exp(\mathcal{B}_m^n(p)) =$ length of its shortest positive product.

$$\begin{cases} = 1 & \text{with prob. } p = p(n) \\ = 0 & \text{with prob. } 1 - p \end{cases}$$

Then as $n \to \infty$:

$$\mathbb{P}(\mathcal{B}_m^n(p) \text{ is primitive}) \longrightarrow \begin{cases} 1 & \text{if } np - \log n \to +\infty \\ (*) & \text{if } np - \log n \to c \in \mathbb{R} \\ 0 & \text{if } np - \log n \to -\infty \end{cases}$$

 $(*) \in \left[1 - \left(1 - e^{-2e^{-c}}\right)^m - me^{-2e^{-c}} \left(1 - e^{-2e^{-c}}\right)^{m-1}, 1 - \left(1 - e^{-e^{-c}}\right)^m\right] \subset (0, 1)$

Primitivity of random sets: our result

 $\mathcal{B}_{\mathbf{m}}^{\mathbf{n}}(\mathbf{p}) = \text{set of } m \text{ matrices of size } n \times n \text{ sampled as seen before.}$

 $\exp(\mathcal{B}_m^n(p)) =$ length of its shortest positive product.

$$\begin{cases} = 1 & \text{with prob. } p = p(n) \\ = 0 & \text{with prob. } 1 - p \end{cases}$$

Then as $n \to \infty$:

$$\mathbb{P}(\mathcal{B}_m^n(p) \text{ is primitive}) \longrightarrow \begin{cases} 1 & \text{if } np - \log n \to +\infty \\ (*) & \text{if } np - \log n \to c \in \mathbb{R} \\ 0 & \text{if } np - \log n \to -\infty \end{cases}$$

 $(*) \in [1 - (1 - e^{-2e^{-c}})^m - me^{-2e^{-c}} (1 - e^{-2e^{-c}})^{m-1}, 1 - (1 - e^{-e^{-c}})^m] \subset (0, 1)$ Furthermore:

- If $np \log n \to +\infty$: $exp(\mathcal{B}_m^n(p)) = O(n \log n)$ with high probability
- If $np \log n \to c \in \mathbb{R}$: $exp(\mathcal{B}_m^n(p)) = O(n \log n)$ with high probability conditioned to the fact that every matrix of $\mathcal{B}_m^n(p)$ has <u>neither zero-rows nor zero-columns</u>

Scrambling property of random sets: our result

 $\mathcal{B}_{\mathbf{m}}^{\mathbf{n}}(\mathbf{p}) = \text{set of } m \text{ matrices of size } n \times n$ sampled as seen before.

 $scr(\mathcal{B}_m^n(p)) = length of its shortest product with a positive column.$

$$\begin{cases} = 1 & \text{with prob. } p = p(n) \\ = 0 & \text{with prob. } 1 - p \end{cases}$$

Then as $n \to \infty$:

$$\mathbb{P}(\mathcal{B}_m^n(p) \text{ is scrambling}) \longrightarrow \begin{cases} 1 & \text{if } np - \log n \to +\infty \\ (*) & \text{if } np - \log n \to c \in \mathbb{R} \\ 0 & \text{if } np - \log n \to -\infty \end{cases}$$

 $(*) \in [1 - (1 - e^{-2e^{-c}})^m - me^{-2e^{-c}} (1 - e^{-2e^{-c}})^{m-1}, 1 - (1 - e^{-e^{-c}})^m] \subset (0, 1)$ Furthermore:

- If $np \log n \to +\infty$: $scr(\mathcal{B}_m^n(p)) = O(n \log n)$ with high probability
- If $np \log n \rightarrow c \in \mathbb{R}$: $scr(\mathcal{B}_m^n(p)) = O(n \log n)$ with high probability conditioned to the fact that every matrix of $\mathcal{B}_m^n(p)$ has <u>neither zero-rows nor zero-columns</u>

What is the probability to generate a primitive set? What is their typical exponent?

- Random matrix sets:
 - Primitivity and shortest positive product
 - Scrambling and shortest column-positive product

Can we approximate the exponent of a set?

- A probabilistic tool for studying primitivity
- A new bound on the exponent of a class of primitive sets

 $M = \{M_1, \ldots, M_m\}$ a set of $n \times n$ matrices with neither zero-rows nor zero-columns (**NZ** matrices).

The directed graph $\mathcal{D} = (\mathcal{V}, \mathcal{E})$:

•
$$\mathcal{V} = \{ v \in \{0, 1\}^n : v \neq (0, ..., 0) \}$$

•
$$v \rightarrow w$$
 labeled by M_k if $\mathbf{v} \mathbf{M}_k = \mathbf{w}$.

$$\left\{ M_{1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, M_{2} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \right\}, \quad \{e_{1}, e_{2}, e_{3}, e_{4}\} = \text{canonical basis}$$

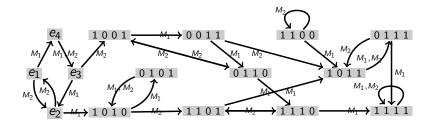
 $\mathcal{M} = \{M_1, \dots, M_m\}$ set of NZ-matrices. Fix $t \ge 1$ integer.

The game's rules

O Player B secretly chooses an initial vertex $e_i \in \{e_1, \ldots, e_n\}$.

2 Player A chooses a sequence of at most t matrices in \mathcal{M} .

So Let $w = e_i^T M_{i_1} \cdots M_{i_t}$. A component of w is chosen uniformly at random: if it is = 1 Player A wins, otherwise Player B wins.



 $\mathcal{M} = \{M_1, \dots, M_m\}$ set of NZ-matrices. Fix $t \ge 1$ integer.

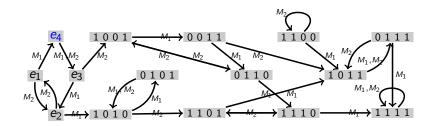
The game's rules

O Player B secretly chooses an initial vertex $e_i \in \{e_1, \ldots, e_n\}$.

2 Player A chooses a sequence of at most t matrices in \mathcal{M} .

So Let $w = e_i^T M_{i_1} \cdots M_{i_t}$. A component of w is chosen uniformly at random: if it is = 1 Player A wins, otherwise Player B wins.

Player B: e4



 $\mathcal{M} = \{M_1, \dots, M_m\}$ set of NZ-matrices. Fix $t \ge 1$ integer.

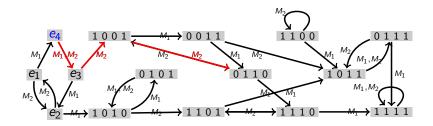
The game's rules

O Player B secretly chooses an initial vertex $e_i \in \{e_1, \ldots, e_n\}$.

2 Player A chooses a sequence of at most t matrices in \mathcal{M} .

So Let $w = e_i^T M_{i_1} \cdots M_{i_t}$. A component of w is chosen uniformly at random: if it is = 1 Player A wins, otherwise Player B wins.

Player B: e_4 Player A: $M_1 M_2 M_2$ (t = 3)



 $\mathcal{M} = \{M_1, \dots, M_m\}$ set of NZ-matrices. Fix $t \ge 1$ integer.

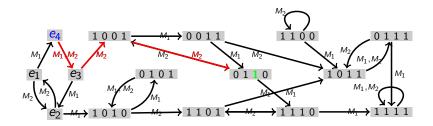
The game's rules

O Player B secretly chooses an initial vertex $e_i \in \{e_1, \ldots, e_n\}$.

2 Player A chooses a sequence of at most t matrices in \mathcal{M} .

So Let $w = e_i^T M_{i_1} \cdots M_{i_t}$. A component of w is chosen uniformly at random: if it is = 1 Player A wins, otherwise Player B wins.

Player B: e_4 Player A: $M_1 M_2 M_2$ (t = 3) Player A wins!



 $\mathcal{M} = \{M_1, \dots, M_m\}$ set of NZ-matrices. Fix $t \ge 1$ integer.

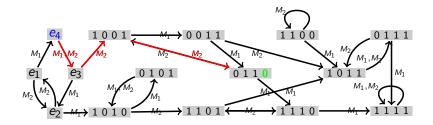
The game's rules

O Player B secretly chooses an initial vertex $e_i \in \{e_1, \ldots, e_n\}$.

2 Player A chooses a sequence of at most t matrices in \mathcal{M} .

So Let $w = e_i^T M_{i_1} \cdots M_{i_t}$. A component of w is chosen uniformly at random: if it is = 1 Player A wins, otherwise Player B wins.

Player B: e_4 Player A: $M_1 M_2 M_2$ (t = 3) Player B wins!



 $\mathcal{M} = \{M_1, \dots, M_m\}$ set of NZ-matrices. Fix $t \ge 1$ integer.

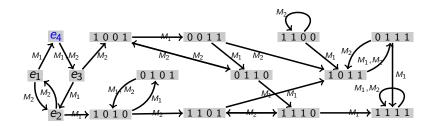
The game's rules

O Player B secretly chooses an initial vertex $e_i \in \{e_1, \ldots, e_n\}$.

2 Player A chooses a sequence of at most t matrices in \mathcal{M} .

• Let $w = e_i^T M_{i_1} \cdots M_{i_t}$. A component of w is chosen uniformly at random: if it is = 1 Player A wins, otherwise Player B wins.

Player B: e4



 $\mathcal{M} = \{M_1, \dots, M_m\}$ set of NZ-matrices. Fix $t \ge 1$ integer.

The game's rules

O Player B secretly chooses an initial vertex $e_i \in \{e_1, \ldots, e_n\}$.

2 Player A chooses a sequence of at most t matrices in \mathcal{M} .

So Let $w = e_i^T M_{i_1} \cdots M_{i_t}$. A component of w is chosen uniformly at random: if it is = 1 Player A wins, otherwise Player B wins.

Player B: e_4 Player A: $M_1 M_2 M_2 M_1 M_2 M_2 M_1 > 0 (t = 7)$



 $\mathcal{M} = \{M_1, \dots, M_m\}$ set of NZ-matrices. Fix $t \ge 1$ integer.

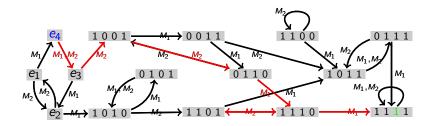
The game's rules

O Player B secretly chooses an initial vertex $e_i \in \{e_1, \ldots, e_n\}$.

2 Player A chooses a sequence of at most t matrices in \mathcal{M} .

So Let $w = e_i^T M_{i_1} \cdots M_{i_t}$. A component of w is chosen uniformly at random: if it is = 1 Player A wins, otherwise Player B wins.

Player B: e_4 Player A: $M_1M_2M_2M_1M_2M_2M_1 > 0$ (t = 7) Player A wins!



 $\mathcal{M} = \{M_1, \dots, M_m\}$ set of NZ-matrices. Fix $t \ge 1$ integer.

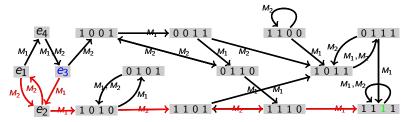
The game's rules

O Player B secretly chooses an initial vertex $e_i \in \{e_1, \ldots, e_n\}$.

2 Player A chooses a sequence of at most t matrices in \mathcal{M} .

So Let $w = e_i^T M_{i_1} \cdots M_{i_t}$. A component of w is chosen uniformly at random: if it is = 1 Player A wins, otherwise Player B wins.

Player B: e_3 Player A: $M_1M_2M_2M_1M_2M_2M_1 > 0$ (t = 7) Player A wins! Independently of what Player B plays!



 $\mathcal{M} = \{M_1, \dots, M_m\}$ set of NZ-matrices. Fix $t \ge 1$ integer.

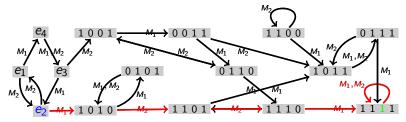
The game's rules

O Player B secretly chooses an initial vertex $e_i \in \{e_1, \ldots, e_n\}$.

2 Player A chooses a sequence of at most t matrices in \mathcal{M} .

So Let $w = e_i^T M_{i_1} \cdots M_{i_t}$. A component of w is chosen uniformly at random: if it is = 1 Player A wins, otherwise Player B wins.

Player B: e_2 Player A: $M_1M_2M_2M_1M_2M_2M_1 > 0$ (t = 7) Player A wins! Independently of what Player B plays!



 $\mathcal{M} = \{M_1, \dots, M_m\}$ set of NZ-matrices. Fix $t \ge 1$ integer.

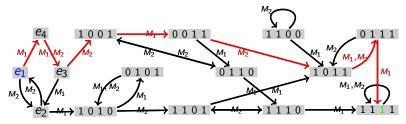
The game's rules

O Player B secretly chooses an initial vertex $e_i \in \{e_1, \ldots, e_n\}$.

2 Player A chooses a sequence of at most t matrices in \mathcal{M} .

So Let $w = e_i^T M_{i_1} \cdots M_{i_t}$. A component of w is chosen uniformly at random: if it is = 1 Player A wins, otherwise Player B wins.

Player B: e_1 Player A: $M_1M_2M_2M_1M_2M_2M_1 > 0$ (t = 7) Player A wins! Independently of what Player B plays!



The Synchronizing Probability Function for primitive sets

The probability that Player A wins if they both play optimally is:

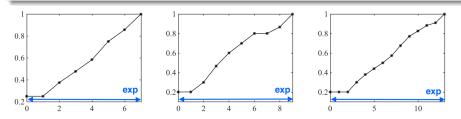
$$\mathcal{K}_{\mathcal{M}}(t) = \min_{\substack{p \in \mathbb{R}^+ \\ p^T e = 1}} \left\{ \max_{M_{i_1} \cdot \dots \cdot M_{i_l} \in \mathcal{M}^{\leq t}} p^T M_{i_1} \cdots M_{i_l} \left(\frac{\mathbf{e}}{n} \right) \right\}$$

where p is the initial distribution of player B, $\mathcal{M}^{\leq t}$ the set of the products of length $\leq t$ and $\mathbf{e} = (1, 1, ..., 1)$.

The Synchronizing Probability Function for primitive sets

The probability that Player A wins if they both play optimally is:

$$\mathcal{K}_{\mathcal{M}}(t) = \min_{\substack{p \in \mathbb{R}^+ \\ p^T e = 1}} \left\{ \max_{\substack{M_{i_1} \cdot \dots \cdot M_{i_j} \in \mathcal{M}^{\leq t}}} p^T M_{i_1} \cdots M_{i_l} \left(\frac{\mathbf{e}}{n} \right) \right\}$$



Properties

• $\mathcal{K}_{\mathcal{M}}(t)$ is nondecreasing, $\mathcal{K}_{\mathcal{M}}(t) = 1 \iff \mathcal{M}$ is primitive.

•
$$\min_t \{ K_{\mathcal{M}}(t) = 1 \} = exp(\mathcal{M}).$$

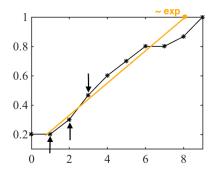
It captures the **speed** at which a set reaches its first positive product

The Synchronizing Probability Function for primitive sets

The probability that Player A wins if they both play optimally is:

$$\mathcal{K}_{\mathcal{M}}(t) = \min_{\substack{p \in \mathbb{R}^+ \\ p^T e = 1}} \left\{ \max_{M_{i_1} \cdot \dots \cdot M_{i_l} \in \mathcal{M}^{\leq t}} p^T M_{i_1} \cdots M_{i_l} \left(\frac{\mathbf{e}}{n} \right) \right\}$$

where p is the initial distribution of player B, $\mathcal{M}^{\leq t}$ the set of the products of length $\leq t$ and $\mathbf{e} = (1, 1, ..., 1)$



The approximated SPF: $\overline{K}(t)$

The probability that Player A wins if they both play optimally is:

$$\bar{\mathbf{K}}_{\mathcal{M}}(t) = \min_{\mathbf{e}_{1},\dots,\mathbf{e}_{n}} \left\{ \max_{M_{i_{1}}\dots M_{i_{l}} \in \mathcal{M}^{\leq t}} \mathbf{e}_{i}^{T} M_{i_{1}} \cdots M_{i_{l}} \left(\frac{\mathbf{e}}{n} \right) \right\}$$

where $\mathcal{E} = \{e_1, \ldots, e_n\}$ is the canonical basis.

• $\bar{K}(t) \ge K(t)$

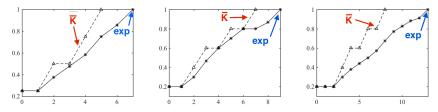
The approximated SPF: $\bar{K}(t)$

The probability that Player A wins if they both play optimally is:

$$\bar{\mathcal{K}}_{\mathcal{M}}(t) = \min_{\boldsymbol{e}_{1},\dots,\boldsymbol{e}_{n}} \left\{ \max_{M_{i_{1}}\dots M_{i_{l}} \in \mathcal{M}^{\leq t}} \boldsymbol{e}_{i}^{T} M_{i_{1}} \cdots M_{i_{l}} \left(\frac{\mathbf{e}}{n} \right) \right\}$$

where $\mathcal{E} = \{e_1, \ldots, e_n\}$ is the canonical basis.

• $\bar{K}(t) \ge K(t)$



Proposition

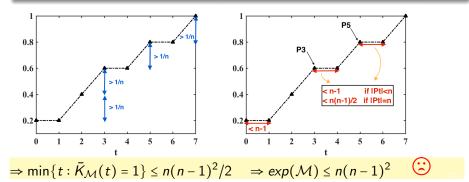
If $\min\{t: \overline{K}_{\mathcal{M}}(t) = 1\} \leq B(n)$ then $exp(\mathcal{M}) \leq 2B(n)$.

The approximated SPF: $\bar{K}(t)$

Linear programming formulation

$$\bar{K}_{\mathcal{M}}(t) = \min_{e_i,k} \frac{k}{n} \quad \text{s. t.} \begin{cases} e_i^T H_t \le k\mathbf{e} \\ e_i^T \mathbf{e} = 1 \\ e_i \ge 0 \end{cases}$$

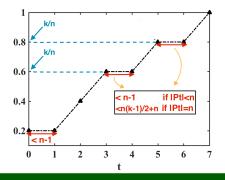
where the *i*-th column of H_t is the vector $A_i \mathbf{e}$ with A_i the *i*-th element of $\mathcal{M}^{\leq t}$. $\mathbf{P}_t \subseteq \{e_1, \ldots, e_n\}$ is the set of its **optimal solutions**.



New upper bound for a class of primitive sets

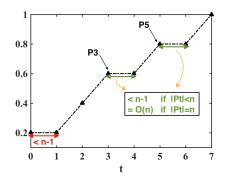
Assumption

For each matrix $M_i \in \mathcal{M}$ there exists a **permutation matrix** P_i s.t. $M_i \ge P_i$ entrywise.



Proposition

 $exp(\mathcal{M}) \le (n^3 - n^2 + 2n - 8)/4$ for any set \mathcal{M} that fulfils the assumption. \longrightarrow better than the known one! but still cubic...



Conjecture

For any NZ-primitive set \mathcal{M} of matrix size $n \times n$, $exp(\mathcal{M}) = O(n^2)$.

Thank you! ...questions?

- C. Catalano, R. M. Jungers, On randomized generation of slowly synchronizing automata. Mathematical Foundations of Computer Science, 2018, 117, 48:1–48:16.
- C. Catalano, R. M. Jungers, The synchronizing probability function of primitive sets of matrices. Developments in Language Theory, 2018, 194-205.
 - C. Catalano, R. M. Jungers, *Random primitive sets may generate slowly synchronizing automata*. Soon on Arxiv.