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Qualitative reachability in Markov chains

Input:
— Markov chain
— Target states

Output:

— 570: set of states reaching T with
probability 0

— S=1: set of states reaching T with
probability 1
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Qualitative reachability in Markov decision processes

Input:
— Markov decision process (MDP):
transition consists of nondeterministic

choice of distribution from source state,

then probabilistic choice of target state
according to the distribution
— Target states
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Output:

— S579: set of states reaching T with
probability O for all schedulers
(resolutions of nondeterminism)

— 571: set of states reaching T with
probability 1 for all schedulers
(resolutions of nondeterminism)
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Qualitative reachability in Markov decision processes

Input: Output:

— Markov decision process (MDP): — 559: set of states reaching T with
transition consists of nondeterministic probability 0 for some scheduler
choice of distribution from source state, (resolution of nondeterminism)

then probabilistic choice of target state — S-': set of states reaching T with
according to the distribution probability 1 for some scheduler

— Target states (resolution of nondeterminism)




Interval Markov chains

e Precise information regarding transition probabilities may not be available.

o Interval Markov chains (IMCs): Markov chains where transition probabilities

are replaced by intervals [JL91,KU02].
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[JL91] B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic processes. In Proc. LICS 1991.
[KUO02] I. O. Kozine and L. V. Utkin. Interval-valued finite Markov chains. Reliable Computing, 8(2), 2002.



Open interval Markov chains

e Open IMCs: use (half-)open intervals, in addition to closed intervals [CK15].
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[CK15]. S. Chakraborty and J.-P. Katoen. Model Checking of Open Interval Markov Chains. In Proc. ASMTA 2015.



Reachability in IMCs

e For closed IMCs, quantitative reachability (more general than
qualitative reachability) can be decided in polynomial time
[CHK13,PLSS13].

e For open IMCs, quantitative reachability probabilities can be
approximated.

e Transforming an open IMC to a closed IMC by closing all intervals
labelling transitions gives an arbitrarily close approximation [CK15].

e What about exact verification of qualitative reachability probabilities
in open IMCs?

[CHK13]. T. Chen, T. Han, M. Kwiatkowska. On the Complexity of Model Checking Interval-valued Discrete Time Markov
Chains. Information Processing Letters, 113(7), 2013.

[CK15]. S. Chakraborty and J.-P. Katoen. Model Checking of Open Interval Markov Chains. In Proc. ASMTA 2015.
[PLSS13]. A. Puggelli et al. Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties. In
Proc. CAV 2013.



Uncertain Markov chain semantics of an IMC

® The uncertain Markov chain (UMC) semantics is an (uncountable) set of Markov
chains.

® Each Markov chain corresponds to a certain choice of probabilities from the
intervals of each transition.

e Example:
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Interval Markov decision process semantics of an IMC

e The interval Markov decision process (IMDP) semantics is an MDP with an
(uncountable) number of transition distributions.

e The probabilities of each distribution associated with state s
corresponds to a certain choice of probabilities from the intervals of the
outgoing edges of s.

e Example: state sy
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Interval Markov decision process semantics of an IMC

e The interval Markov decision process (IMDP) semantics is an MDP with an
(uncountable) number of transition distributions.

e The probabilities of each distribution associated with state s
corresponds to a certain choice of probabilities from the intervals of the
outgoing edges of s.

e Example: state sq
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Uncountable set of distributions available in sp:
between {sp — 0.5,s1 — 0.5} and {sp — 0,5, — 1}



UMC semantics vs. IMDP semantics: example

e Example IMC:

(0,1) [1,1]
g ©.1) 8

e UMC semantics: for each A € (0, 1), [O]umc contains a Markov chain Dy of the

e |IMDP semantics: on each visit to sp, can choose a different distribution, for
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Qualitative reachability in interval Markov chains

o SOUMC = {s€ S| VD € [OJumc . Prl(Reach(T)) = 0};
o SIME = {s€ 5| 3D € [Olumc . PrP(Reach(T)) = 0};
o SIUMC _ {5 € 513D € [Oumc - PrP(Reach(T)) = 1}
o SLUMC — 15 5| VD e [O]umc - PrP(Reach(T)) = 1}.
o SOMPY = s € S| Vo € Schedl®I™Pr Pr?(Reach(T)) = 0};
° Sg’IMDP ={seS|3oe Sched[CInmr .Pr7(Reach(T)) = 0};
o SYMPY = fs € S| 30 € Schedl®I™Pr Pro(Reach(T)) = 1};
o SUMPY = s € S| Vo € Schedl®I™Pr Pr?(Reach(T)) = 1};

(where [O]umc is the UMC semantics of IMC O, and Schedl€1™MPP s the set of
schedulers of [O]vpp)-



Main results

UMC and IMDP semantics coincide for all cases bar “universal/probability 1"
0,UMC 0,IMDP <0,UMC 0,IMDP 1,UMC 1,IMDP
Sy =5 R = 53 and 53 — 53 .

There exists an open IMC such that SQ’UMC =5 S@’IMDP.

Qualitative reachability for open IMCs can be decided efficiently

SS,UMC' SS,UMC’ Sé,UMC, Svl/,UMC' S\S,IMDPv SS,IMDP, Sé,IMDP and Svl/,IMDP

can

be computed in polynomial time in the size of the IMC.




Open IMC witnessing Svl’UMC £ Svl’IMDP

. (0,1) [1,1] 1
| é (0,1) @. s € SyUMC but 5 ¢ SPMPP
1,UMC, . .
e 50€ S, . recall that all Markov chains Dy in [O]umc are of the form

for A € (0,1), hence Pr2*(Reach({s1})) = limx00 1 — (1 = A)¥ = 1.
o s ¢ SLIMDP.

e Consider scheduler (with memory) o that assigns 2 probability to the
i-th attempt to take the transition from sq to s;.
e Prg (Reach({s1})) = % + %(% + %(% +-)< L



Qualitative reachability in interval Markov chains

R SS,UMC ={s € S| VD € [O]umc . P (Reach(T)) =0}
R SS,UMC = {s€ S| 3D € [O]umc . PrP(Reach(T)) = 0};
R S%,UMC ={se S |3ID e [O]umc - Pr (Reach(T)) =1}
R Svll,UMC = {s€ S| VD € [O]umc . PrP(Reach(T)) = 1}.

o SOMPP — (5 ¢ S| Vo e Sched®1™Pr Pr7(Reach(T)) = 0};
o 50 AMDPP _ 5 € S| 3o € Sched[®lvpr pro(Reach(T)) = 0};
o SIMPF _ f5 ¢ S| 35 € Schedl®1Mpr  Pro(Reach(T)) = 1};
o SU™PF — {5 ¢ S| Vo e Schedl®1Mpr  Pro(Reach(T)) = 1}.



Universal quantification/probability 0

o Complement sets:

o S\ SYMC = s ¢ 5|3D e [O]umc . PrP(Reach(T)) > 0}.
o S\ SY™PF — f5 e 5|30 e Schedl®IMPP P17 (Reach(T)) > 0}.

Computation of S\ SVO’UI\'IC and S\ .S’VO’H\'IDP by graph reachability

e seS\ SS’UMC iff there exists a path in the graph of the IMC from s to T.

e scS5\ SS’IMDP iff there exists a path in the graph of the IMC from s to T.

0,UMC _ <0,IMDP
Sy =5y

e Consequence: ; can be computed in polynomial time.



Qualitative reachability in interval Markov chains

o SOUMC — 15 5| VD e [O]umc - PrP(Reach(T)) = 0};
o SIMC = {s€ 5| 3D € [Olumc . PrP(Reach(T)) = 0};
o SPUMC = {s€ 513D € [OJumc . Prl(Reach(T)) = 1};
o SLUMC — 15 5| VD e [O]umc - PrP(Reach(T)) = 1}.
o SOMPP — (5 ¢ 5| Vo e Sched®1™Pr Pro(Reach(T)) = 0};
° Sg"IMDP ={seS|doe Sched[®lmvior p Pr{(Reach(T)) = 0};
o SYMPY = fs € S| 30 € Schedl®I™Pr Pr?(Reach(T)) = 1};
o SU™PF — {5 ¢ S| Vo e Schedl®1Mpr  Pro(Reach(T)) = 1}.



Existential quantification /probability 0 and 1

o Valid edge set: set of edges with

@ Same source state;
@® At least one assignment of positive probabilities to edges that respects
the edges’ intervals.

e Qualitative MDP abstraction: represent each valid edge set by an (arbitrary)
representative distribution over the set’s edges.

e Justification: in finite MDPs, exact (positive) probability values are
immaterial for qualitative reachability properties.

e Example:
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Existential quantification /probability 0 and 1

o Valid edge set: set of edges with

@ Same source state;
@® At least one assignment of positive probabilities to edges that respects
the edges’ intervals.

e Qualitative MDP abstraction: represent each valid edge set by an (arbitrary)
representative distribution over the set’s edges.

e Justification: in finite MDPs, exact (positive) probability values are
immaterial for qualitative reachability properties.

e Example:
(0,0.6) (0,0.5] [0.5,0.5] 07
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(0.1,0.2] [0.5,0.5] 0.12



Existential quantification /probability 0 and 1

e Example with eliminable edges (edges with left-closed intervals for which the
left endpoint equals 0):
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Existential quantification /probability 0 and 1

e Example with eliminable edges (edges with left-closed intervals for which the
left endpoint equals 0):
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Existential quantification /probability 0 and 1

e Example with eliminable edges (edges with left-closed intervals for which the
left endpoint equals 0):
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Existential quantification /probability 0 and 1

e Example with eliminable edges (edges with left-closed intervals for which the
left endpoint equals 0):
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[0.6,0.8]
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Existential quantification /probability 0 and 1

e Example with eliminable edges (edges with left-closed intervals for which the
left endpoint equals 0):
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Existential quantification/probability 0 and 1

Preservation of existential qualitative reachability

Let A € {0,1}. There exists a scheduler o € Sched®™A(©) of the qualitative MDP
abstraction such that PrJ (Reach(T)) = X if and only if:

o there exists D € [O]umc such that PrP(Reach(T)) = \;

o there exists 0/ € Schedl®I™PP uch that Prgl(Reach(T)) =\

e Hence:

o S3UMC — fs e 5| 30 € Sched™A@) Pr?(Reach(T)) = A};
o S3™MPP _ f5 e 5| 3o € Sched®™A©) Pr?(Reach(T)) = A}.

Proposal: compute {s € S | 3o € Sched®™A(©) Pr7(Reach(T)) = A} by
analysing the qualitative MDP abstraction using established techniques for
qualitative reachability properties of finite MDPs.



Existential quantification/probability 0 and 1

Preservation of existential qualitative reachability

Let A € {0,1}. There exists a scheduler o € Sched®™A(©) of the qualitative MDP
abstraction such that PrJ (Reach(T)) = X if and only if:

o there exists D € [O]umc such that PrP(Reach(T)) = \;

o there exists 0/ € Schedl®I™PP uch that Prgl(Reach(T)) =\

e Hence:
o S3UMC — fs e 5| 30 € Sched™A@) Pr?(Reach(T)) = A};
o S3™MPP = {5 € 5| 3o € Sched ™A Pr?(Reach(T)) = A}.
e Proposal: compute {s € S | 3o € Sched®™A(©) Pr7(Reach(T)) = A} by

analysing the qualitative MDP abstraction using established techniques for
qualitative reachability properties of finite MDPs.

e But ...



Existential quantification /probability 0 and 1

e Size of the qualitative MDP abstraction: exponential in the size of the IMC.

e If an IMC state has n eliminable edges, the corresponding state of the
qualitative MDP abstraction has in the worst case 2" — 1 outgoing
distributions (depends on the endpoints of the intervals).

e Example with n = 3:
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Existential quantification/probability 0 and 1

e Obtain algorithms applied to the qualitative MDP abstraction that run in
polynomial time in the size of the IMC?
o Sufficient to compute predecessor operations in polynomial time in the size
of the IMC (precedent in the quantitative context in [HM18]).
e Example of predecessor operation: CPre (used for probability 0 case).

e For X C S, CPre(X) is the set of states for which there exists a distribution
such that all of the distributions edges lead to states in X.

e Formally, CPre(X) = {s € S| 3 € Aqma(s) .support(n) C X}, where
Aqma(s) is the set of distributions available in state s in QMA(O).

CPre(X) can be computed in polynomial time in the size of the IMC

Given s € S, we have s € CPre(X) if and only if
@ edges from s to S\ X are eliminable, and

@ the sum of the right endpoints of edges from s to X is at least 1 (strictly
greater than 1 if at least one edge from s to X is right open).

[HM18]. B. Monmege and S. Haddad. Interval iteration algorithm for MDPs and IMDPs. Theoretical Computer Science,
735, 2018.



Existential quantification/probability 0 and 1

e Recall: s € CPre(X) if and only if

@ edges from s to S\ X are eliminable, and
@® the sum of the right endpoints of edges from s to X is at least 1
(strictly greater than 1 if at least one edge from s to X is right open).

e Example:

()




Existential quantification/probability 0 and 1

e Recall: s € CPre(X) if and only if

@ edges from s to S\ X are eliminable, and
@® the sum of the right endpoints of edges from s to X is at least 1
(strictly greater than 1 if at least one edge from s to X is right open).

e Example:




Qualitative reachability in interval Markov chains

o SPUMC = {s€ S| VD e [OJumc - PrP (Reach(
° Sg’UMC = {s€ S| 3D € [O]umc . PrP(Reach(
(
(

o SIUMC — (5 53D € [Oumc - PrP(Reach

)
7))
)
7))

H

o SLUMC — f5€ 5| VD e [O]umc - PrP(Reach

o SO’IMDP = {s € S| Vo € Schedl®l™Pr Pro(Reach

¢ (Reach(
o SUMDPP _ s c 5|30 € Schedl®IMPr  Pro(Reach(
¢ (Reach(
( (

o o

o SY™MPP — f5 ¢ 5|30 € Sched®1™Pr  Pr?(Reach

o SU™PP — {5 ¢ S| Vo € Schedl®1™pr  Pro(Reach

7))
7))
7))
7))

H



Universal quantification/probability 1: UMC semantics

e Aim: computation of
SLYUMC — 15 € S| VD € [O]umc - PrP(Reach(T)) = 1}.

e Compute S\ SL"MC ie, {s €S| 3D € [Olumc - PrP(Reach(T)) < 1}.

Universal quantification/probability 1: UMC semantics
There exists D € [O]unmc such that PrP(Reach(T)) < 1 if and only if there

exists a finite path of the graph of O from s to a state in SS’UMC.

o Algorithm for computing Sé’UMC: take the complement of the set of states

that can reach SS’UMC in the graph of the IMC.



Qualitative reachability in interval Markov chains

o Sy"M={s€ S| VD € [Olumc . PrP(Reach(T)) = 0};
o SPUMC _ f5 € 513D € [O]umc . PrP(Reach(T)) = 0};
o SIUMC — f5¢ 53D e [O]umc - PrP(Reach(T)) = 1};
o SLUMC — 15 5| VD e [O]umc - PrP(Reach(T)) = 1}.
o SUIMDP _ £5 ¢ S| Vo e SchedlIMPr  pro(Reach(T)) = 0};
o SUMPP _ (¢ 5| 3o € Schedl1Pr Pr7(Reach(T)) = 0}
o SIMPF _ f5 ¢ S| 35 € Schedl®1Mpr  Pro(Reach(T)) = 1};
o SIMPP — (5 € S| Vo € Schedl®1™PP Prf(Reach(T)) = 1}.



Universal quantification/probability 1: IMDP semantics

e Aim: computation of
SLMPP — (s ¢ § | Vo € Schedl®Iner Pro(Reach(T)) = 1}.

e Compute S\ S@’IMDP, ie.,

{s € §| 3o € Sched[®Inr pro(Reach(T)) < 1}.

e U_7: state set, not including any states in T, in which the IMC can confine
itself with positive probability (defined on the next slide).

Universal quantification/probability 1: IMDP semantics

There exists o € Sched[®1™? sych that Pr?(Reach(T)) < 1 if and only if there
exists a finite path of the graph of O from s to a state in U- .

e Algorithm for computing Sé’IMDP: take the complement of the set of states
that can reach U- 1 in the graph of the IMC.



Universal quantification/probability 1: IMDP semantics

e Characterisation and computation of the set U_17

e Strongly-connected components with no state in T for which the probability
of outgoing edges can be made arbitrarily small (requires left endpoint 0,
but can be left-open).

e Example: [1,1]

L

o U.7t ={so}, because is a strongly-connected component, and the

probability of C can be made arbitrarily small.



Universal quantification/probability 1: IMDP semantics

e Example:

(0,0.6) [0,0.5] [0.5,0.5]

[0.6,0.8]

(0.5,1)

(0,0.2]

[0,0.2] [0.5,0.5]

(son 1.1
o U_1 ={sp,s1}, because é‘})\/_;@) is a strongly-connected component,

and the probability of and (®)can be made arbitrarily small.



Conclusions

e Exact and efficient computation of state sets satisfying qualitative
reachability properties for open IMCs.

e Future work:

e Qualitative w-regular properties.
e Exact computation of state sets satisfying quantitative reachability
properties for open IMCs.



