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Qualitative reachability in Markov chains

Input:
– Markov chain
– Target states T
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Output:
– S=0: set of states reaching T with
probability 0
– S=1: set of states reaching T with
probability 1
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Qualitative reachability in Markov decision processes

Input:
– Markov decision process (MDP):
transition consists of nondeterministic
choice of distribution from source state,
then probabilistic choice of target state
according to the distribution
– Target states T
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Output:
– S=0

∀ : set of states reaching T with
probability 0 for all schedulers
(resolutions of nondeterminism)
– S=1

∀ : set of states reaching T with
probability 1 for all schedulers
(resolutions of nondeterminism)
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Qualitative reachability in Markov decision processes

Input:
– Markov decision process (MDP):
transition consists of nondeterministic
choice of distribution from source state,
then probabilistic choice of target state
according to the distribution
– Target states T
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Output:
– S=0

∃ : set of states reaching T with
probability 0 for some scheduler
(resolution of nondeterminism)
– S=1

∃ : set of states reaching T with
probability 1 for some scheduler
(resolution of nondeterminism)
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Interval Markov chains

• Precise information regarding transition probabilities may not be available.

• Interval Markov chains (IMCs): Markov chains where transition probabilities
are replaced by intervals [JL91,KU02].
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[JL91] B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic processes. In Proc. LICS 1991.

[KU02] I. O. Kozine and L. V. Utkin. Interval-valued finite Markov chains. Reliable Computing, 8(2), 2002.



Open interval Markov chains

• Open IMCs: use (half-)open intervals, in addition to closed intervals [CK15].
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[CK15]. S. Chakraborty and J.-P. Katoen. Model Checking of Open Interval Markov Chains. In Proc. ASMTA 2015.



Reachability in IMCs

• For closed IMCs, quantitative reachability (more general than
qualitative reachability) can be decided in polynomial time
[CHK13,PLSS13].

• For open IMCs, quantitative reachability probabilities can be
approximated.

• Transforming an open IMC to a closed IMC by closing all intervals
labelling transitions gives an arbitrarily close approximation [CK15].

• What about exact verification of qualitative reachability probabilities
in open IMCs?

[CHK13]. T. Chen, T. Han, M. Kwiatkowska. On the Complexity of Model Checking Interval-valued Discrete Time Markov
Chains. Information Processing Letters, 113(7), 2013.

[CK15]. S. Chakraborty and J.-P. Katoen. Model Checking of Open Interval Markov Chains. In Proc. ASMTA 2015.

[PLSS13]. A. Puggelli et al. Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties. In
Proc. CAV 2013.



Uncertain Markov chain semantics of an IMC

• The uncertain Markov chain (UMC) semantics is an (uncountable) set of Markov
chains.

• Each Markov chain corresponds to a certain choice of probabilities from the
intervals of each transition.

• Example:
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Interval Markov decision process semantics of an IMC

• The interval Markov decision process (IMDP) semantics is an MDP with an
(uncountable) number of transition distributions.

• The probabilities of each distribution associated with state s
corresponds to a certain choice of probabilities from the intervals of the
outgoing edges of s.

• Example: state s0
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[0.5, 1]
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Uncountable set of distributions available in s0:
between {s0 7→ 0.5, s1 7→ 0.5} and {s0 7→ 0, s1 7→ 0.5}



Interval Markov decision process semantics of an IMC

• The interval Markov decision process (IMDP) semantics is an MDP with an
(uncountable) number of transition distributions.

• The probabilities of each distribution associated with state s
corresponds to a certain choice of probabilities from the intervals of the
outgoing edges of s.

• Example: state s0
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Interval Markov decision process semantics of an IMC

• The interval Markov decision process (IMDP) semantics is an MDP with an
(uncountable) number of transition distributions.

• The probabilities of each distribution associated with state s
corresponds to a certain choice of probabilities from the intervals of the
outgoing edges of s.

• Example: state s0

s0 s1

[0, 0.6]

[0.5, 1]

s0 s1

0.5
0.50.45

0.550.4
0.6

Uncountable set of distributions available in s0:
between {s0 7→ 0.5, s1 7→ 0.5} and {s0 7→ 0, s1 7→ 0.5}



Interval Markov decision process semantics of an IMC

• The interval Markov decision process (IMDP) semantics is an MDP with an
(uncountable) number of transition distributions.

• The probabilities of each distribution associated with state s
corresponds to a certain choice of probabilities from the intervals of the
outgoing edges of s.

• Example: state s0
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Interval Markov decision process semantics of an IMC

• The interval Markov decision process (IMDP) semantics is an MDP with an
(uncountable) number of transition distributions.

• The probabilities of each distribution associated with state s
corresponds to a certain choice of probabilities from the intervals of the
outgoing edges of s.

• Example: state s0
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Interval Markov decision process semantics of an IMC

• The interval Markov decision process (IMDP) semantics is an MDP with an
(uncountable) number of transition distributions.

• The probabilities of each distribution associated with state s
corresponds to a certain choice of probabilities from the intervals of the
outgoing edges of s.

• Example: state s0
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Uncountable set of distributions available in s0:
between {s0 7→ 0.5, s1 7→ 0.5} and {s0 7→ 0, s1 7→ 1}



UMC semantics vs. IMDP semantics: example

• Example IMC:

s0 s1

(0, 1)
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• UMC semantics: for each λ ∈ (0, 1), [[O]]UMC contains a Markov chain Dλ of the
form:
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• IMDP semantics: on each visit to s0, can choose a different distribution, for
example:
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Qualitative reachability in interval Markov chains

• S0,UMC
∀ = {s ∈ S | ∀D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 0};

• S0,UMC
∃ = {s ∈ S | ∃D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 0};

• S1,UMC
∃ = {s ∈ S | ∃D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 1};

• S1,UMC
∀ = {s ∈ S | ∀D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 1}.

• S0,IMDP
∀ = {s ∈ S | ∀σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 0};

• S0,IMDP
∃ = {s ∈ S | ∃σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 0};

• S1,IMDP
∃ = {s ∈ S | ∃σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 1};

• S1,IMDP
∀ = {s ∈ S | ∀σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 1};

(where [[O]]UMC is the UMC semantics of IMC O, and Sched[[O]]IMDP is the set of
schedulers of [[O]]IMDP).



Main results

UMC and IMDP semantics coincide for all cases bar “universal/probability 1”

S0,UMC
∀ = S0,IMDP

∀ , S0,UMC
∃ = S0,IMDP

∃ and S1,UMC
∃ = S1,IMDP

∃ .

There exists an open IMC such that S1,UMC
∀ 6= S1,IMDP

∀ .

Qualitative reachability for open IMCs can be decided efficiently

S0,UMC
∀ , S0,UMC

∃ , S1,UMC
∃ , S1,UMC

∀ , S0,IMDP
∀ , S0,IMDP

∃ , S1,IMDP
∃ and S1,IMDP

∀ can
be computed in polynomial time in the size of the IMC.



Open IMC witnessing S1,UMC
∀ 6= S1,IMDP

∀

s0 s1

(0, 1)

(0, 1)

[1, 1]

s0 ∈ S1,UMC
∀ but s0 6∈ S1,IMDP

∀

• s0 ∈ S1,UMC
∀ : recall that all Markov chains Dλ in [[O]]UMC are of the form

s0 s1

1− λ

λ

1

for λ ∈ (0, 1), hence PrDλ
s0

(Reach({s1})) = limk→∞ 1− (1− λ)k = 1.

• s0 6∈ S1,IMDP
∀ :

• Consider scheduler (with memory) σ that assigns 1
2i probability to the

i-th attempt to take the transition from s0 to s1.
• Prσs0

(Reach({s1})) = 1
2 + 1

2 ( 1
4 + 3

4 ( 1
8 + · · · )) < 1.



Qualitative reachability in interval Markov chains

• S0,UMC
∀ = {s ∈ S | ∀D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 0};

• S0,UMC
∃ = {s ∈ S | ∃D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 0};

• S1,UMC
∃ = {s ∈ S | ∃D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 1};

• S1,UMC
∀ = {s ∈ S | ∀D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 1}.

• S0,IMDP
∀ = {s ∈ S | ∀σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 0};

• S0,IMDP
∃ = {s ∈ S | ∃σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 0};

• S1,IMDP
∃ = {s ∈ S | ∃σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 1};

• S1,IMDP
∀ = {s ∈ S | ∀σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 1}.



Universal quantification/probability 0

• Complement sets:

• S \ S0,UMC
∀ = {s ∈ S | ∃D ∈ [[O]]UMC .Pr

D
s (Reach(T )) > 0}.

• S \ S0,IMDP
∀ = {s ∈ S | ∃σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) > 0}.

Computation of S \ S0,UMC
∀ and S \ S0,IMDP

∀ by graph reachability

• s ∈ S \ S0,UMC
∀ iff there exists a path in the graph of the IMC from s to T .

• s ∈ S \ S0,IMDP
∀ iff there exists a path in the graph of the IMC from s to T .

• Consequence: S0,UMC
∀ = S0,IMDP

∀ ; can be computed in polynomial time.



Qualitative reachability in interval Markov chains

• S0,UMC
∀ = {s ∈ S | ∀D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 0};

• S0,UMC
∃ = {s ∈ S | ∃D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 0};

• S1,UMC
∃ = {s ∈ S | ∃D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 1};

• S1,UMC
∀ = {s ∈ S | ∀D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 1}.

• S0,IMDP
∀ = {s ∈ S | ∀σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 0};

• S0,IMDP
∃ = {s ∈ S | ∃σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 0};

• S1,IMDP
∃ = {s ∈ S | ∃σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 1};

• S1,IMDP
∀ = {s ∈ S | ∀σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 1}.



Existential quantification/probability 0 and 1

• Valid edge set: set of edges with

1 Same source state;
2 At least one assignment of positive probabilities to edges that respects

the edges’ intervals.

• Qualitative MDP abstraction: represent each valid edge set by an (arbitrary)
representative distribution over the set’s edges.

• Justification: in finite MDPs, exact (positive) probability values are
immaterial for qualitative reachability properties.

• Example:
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Existential quantification/probability 0 and 1

• Valid edge set: set of edges with

1 Same source state;
2 At least one assignment of positive probabilities to edges that respects

the edges’ intervals.

• Qualitative MDP abstraction: represent each valid edge set by an (arbitrary)
representative distribution over the set’s edges.

• Justification: in finite MDPs, exact (positive) probability values are
immaterial for qualitative reachability properties.

• Example:
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Existential quantification/probability 0 and 1

• Example with eliminable edges (edges with left-closed intervals for which the
left endpoint equals 0):
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Existential quantification/probability 0 and 1

• Example with eliminable edges (edges with left-closed intervals for which the
left endpoint equals 0):
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Existential quantification/probability 0 and 1

• Example with eliminable edges (edges with left-closed intervals for which the
left endpoint equals 0):
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Existential quantification/probability 0 and 1

• Example with eliminable edges (edges with left-closed intervals for which the
left endpoint equals 0):
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Existential quantification/probability 0 and 1

• Example with eliminable edges (edges with left-closed intervals for which the
left endpoint equals 0):
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Existential quantification/probability 0 and 1

Preservation of existential qualitative reachability

Let λ ∈ {0, 1}. There exists a scheduler σ ∈ SchedQMA(O) of the qualitative MDP
abstraction such that Prσs (Reach(T )) = λ if and only if:

• there exists D ∈ [[O]]UMC such that PrDs (Reach(T )) = λ;

• there exists σ′ ∈ Sched[[O]]IMDP such that Prσ
′

s (Reach(T )) = λ.

• Hence:

• Sλ,UMC
∃ = {s ∈ S | ∃σ ∈ SchedQMA(O) .Prσs (Reach(T )) = λ};

• Sλ,IMDP
∃ = {s ∈ S | ∃σ ∈ SchedQMA(O) .Prσs (Reach(T )) = λ}.

• Proposal: compute {s ∈ S | ∃σ ∈ SchedQMA(O) .Prσs (Reach(T )) = λ} by
analysing the qualitative MDP abstraction using established techniques for
qualitative reachability properties of finite MDPs.

• But ...



Existential quantification/probability 0 and 1

Preservation of existential qualitative reachability

Let λ ∈ {0, 1}. There exists a scheduler σ ∈ SchedQMA(O) of the qualitative MDP
abstraction such that Prσs (Reach(T )) = λ if and only if:

• there exists D ∈ [[O]]UMC such that PrDs (Reach(T )) = λ;

• there exists σ′ ∈ Sched[[O]]IMDP such that Prσ
′

s (Reach(T )) = λ.

• Hence:

• Sλ,UMC
∃ = {s ∈ S | ∃σ ∈ SchedQMA(O) .Prσs (Reach(T )) = λ};

• Sλ,IMDP
∃ = {s ∈ S | ∃σ ∈ SchedQMA(O) .Prσs (Reach(T )) = λ}.

• Proposal: compute {s ∈ S | ∃σ ∈ SchedQMA(O) .Prσs (Reach(T )) = λ} by
analysing the qualitative MDP abstraction using established techniques for
qualitative reachability properties of finite MDPs.

• But ...



Existential quantification/probability 0 and 1

• Size of the qualitative MDP abstraction: exponential in the size of the IMC.

• If an IMC state has n eliminable edges, the corresponding state of the
qualitative MDP abstraction has in the worst case 2n − 1 outgoing
distributions (depends on the endpoints of the intervals).

• Example with n = 3:
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s1

s2

s3

[0, 1]

[0, 1]

[0, 1]

s0

s1

s2

s3



Existential quantification/probability 0 and 1

• Obtain algorithms applied to the qualitative MDP abstraction that run in
polynomial time in the size of the IMC?

• Sufficient to compute predecessor operations in polynomial time in the size
of the IMC (precedent in the quantitative context in [HM18]).

• Example of predecessor operation: CPre (used for probability 0 case).

• For X ⊆ S , CPre(X ) is the set of states for which there exists a distribution
such that all of the distributions edges lead to states in X .

• Formally, CPre(X ) = {s ∈ S | ∃µ ∈ ∆QMA(s) . support(µ) ⊆ X}, where
∆QMA(s) is the set of distributions available in state s in QMA(O).

CPre(X ) can be computed in polynomial time in the size of the IMC

Given s ∈ S , we have s ∈ CPre(X ) if and only if

1 edges from s to S \ X are eliminable, and

2 the sum of the right endpoints of edges from s to X is at least 1 (strictly
greater than 1 if at least one edge from s to X is right open).

[HM18]. B. Monmege and S. Haddad. Interval iteration algorithm for MDPs and IMDPs. Theoretical Computer Science,
735, 2018.



Existential quantification/probability 0 and 1

• Recall: s ∈ CPre(X ) if and only if

1 edges from s to S \ X are eliminable, and
2 the sum of the right endpoints of edges from s to X is at least 1

(strictly greater than 1 if at least one edge from s to X is right open).

• Example:

s0

s1

s2

s3

[0.3, 0.5]

[0, 0.6]

[0, 0.5]

X

s0

s1

s2

s3

X



Existential quantification/probability 0 and 1

• Recall: s ∈ CPre(X ) if and only if

1 edges from s to S \ X are eliminable, and
2 the sum of the right endpoints of edges from s to X is at least 1

(strictly greater than 1 if at least one edge from s to X is right open).

• Example:

s0

s1

s2

s3

[0.3, 0.5]

[0, 0.6]

[0, 0.5]

X

s0

s1

s2

s3

X



Qualitative reachability in interval Markov chains

• S0,UMC
∀ = {s ∈ S | ∀D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 0};

• S0,UMC
∃ = {s ∈ S | ∃D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 0};

• S1,UMC
∃ = {s ∈ S | ∃D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 1};

• S1,UMC
∀ = {s ∈ S | ∀D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 1}.

• S0,IMDP
∀ = {s ∈ S | ∀σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 0};

• S0,IMDP
∃ = {s ∈ S | ∃σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 0};

• S1,IMDP
∃ = {s ∈ S | ∃σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 1};

• S1,IMDP
∀ = {s ∈ S | ∀σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 1}.



Universal quantification/probability 1: UMC semantics

• Aim: computation of
S1,UMC
∀ = {s ∈ S | ∀D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 1}.

• Compute S \ S1,UMC
∀ , i.e., {s ∈ S | ∃D ∈ [[O]]UMC .Pr

D
s (Reach(T )) < 1}.

Universal quantification/probability 1: UMC semantics

There exists D ∈ [[O]]UMC such that PrDs (Reach(T )) < 1 if and only if there

exists a finite path of the graph of O from s to a state in S0,UMC
∃ .

• Algorithm for computing S1,UMC
∀ : take the complement of the set of states

that can reach S0,UMC
∃ in the graph of the IMC.



Qualitative reachability in interval Markov chains

• S0,UMC
∀ = {s ∈ S | ∀D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 0};

• S0,UMC
∃ = {s ∈ S | ∃D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 0};

• S1,UMC
∃ = {s ∈ S | ∃D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 1};

• S1,UMC
∀ = {s ∈ S | ∀D ∈ [[O]]UMC .Pr

D
s (Reach(T )) = 1}.

• S0,IMDP
∀ = {s ∈ S | ∀σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 0};

• S0,IMDP
∃ = {s ∈ S | ∃σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 0};

• S1,IMDP
∃ = {s ∈ S | ∃σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 1};

• S1,IMDP
∀ = {s ∈ S | ∀σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 1}.



Universal quantification/probability 1: IMDP semantics

• Aim: computation of
S1,IMDP
∀ = {s ∈ S | ∀σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) = 1}.

• Compute S \ S1,IMDP
∀ , i.e.,

{s ∈ S | ∃σ ∈ Sched[[O]]IMDP .Prσs (Reach(T )) < 1}.

• U¬T : state set, not including any states in T , in which the IMC can confine
itself with positive probability (defined on the next slide).

Universal quantification/probability 1: IMDP semantics

There exists σ ∈ Sched[[O]]IMDP such that Prσs (Reach(T )) < 1 if and only if there
exists a finite path of the graph of O from s to a state in U¬T .

• Algorithm for computing S1,IMDP
∀ : take the complement of the set of states

that can reach U¬T in the graph of the IMC.



Universal quantification/probability 1: IMDP semantics

• Characterisation and computation of the set U¬T ?

• Strongly-connected components with no state in T for which the probability
of outgoing edges can be made arbitrarily small (requires left endpoint 0,
but can be left-open).

• Example:

s0 s1

(0, 1)

(0, 1)

[1, 1]

• U¬T = {s0}, because
s0 is a strongly-connected component, and the

probability of
s0 s1

can be made arbitrarily small.



Universal quantification/probability 1: IMDP semantics

• Example:

s0 s1 s2

s3 s4

(0, 0.6)

(0.5, 1)

[0, 0.5]
[0.6, 0.8]

(0, 0.2]

[0, 0.2]

[0.5, 0.5]

[0.5, 0.5]

[1, 1] [1, 1]

• U¬T = {s0, s1}, because
s0 s1

is a strongly-connected component,

and the probability of
s0 s1 and

s1

s3 can be made arbitrarily small.



Conclusions

• Exact and efficient computation of state sets satisfying qualitative
reachability properties for open IMCs.

• Future work:

• Qualitative ω-regular properties.
• Exact computation of state sets satisfying quantitative reachability

properties for open IMCs.


