Qualitative Reachability for Open Interval Markov Chains

Jeremy Sproston

Dipartimento di Informatica University of Turin Italy

RP 2018 26th September 2018

Qualitative reachability in Markov chains

Input:

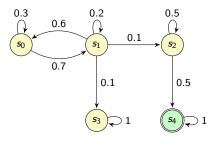
– Markov chain

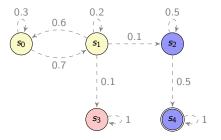
– Target states T

Output:

 $-S^{=0}$: set of states reaching T with probability 0

 $-S^{=1}$: set of states reaching T with probability 1





Qualitative reachability in Markov decision processes

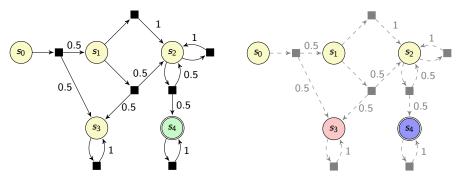
Input:

 Markov decision process (MDP): transition consists of nondeterministic choice of distribution from source state, then probabilistic choice of target state according to the distribution

Target states T

Output:

 $-S_{\forall}^{=0}$: set of states reaching T with probability 0 for all schedulers (resolutions of nondeterminism) $-S_{\forall}^{=1}$: set of states reaching T with probability 1 for all schedulers (resolutions of nondeterminism)



Qualitative reachability in Markov decision processes

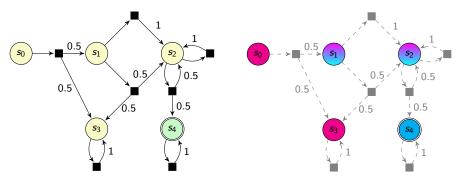
Input:

 Markov decision process (MDP): transition consists of nondeterministic choice of distribution from source state, then probabilistic choice of target state according to the distribution

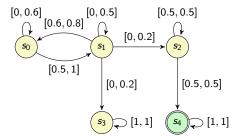
– Target states T

Output:

 $-S_{\exists}^{=0}$: set of states reaching T with probability 0 for some scheduler (resolution of nondeterminism) $-S_{\exists}^{=1}$: set of states reaching T with probability 1 for some scheduler (resolution of nondeterminism)

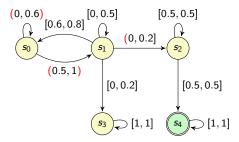


- Precise information regarding transition probabilities may not be available.
- Interval Markov chains (IMCs): Markov chains where transition probabilities are replaced by intervals [JL91,KU02].



[JL91] B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic processes. In Proc. LICS 1991.
[KU02] I. O. Kozine and L. V. Utkin. Interval-valued finite Markov chains. Reliable Computing, 8(2), 2002.

• Open IMCs: use (half-)open intervals, in addition to closed intervals [CK15].



[[]CK15]. S. Chakraborty and J.-P. Katoen. Model Checking of Open Interval Markov Chains. In Proc. ASMTA 2015.

- For *closed IMCs*, quantitative reachability (more general than qualitative reachability) can be decided in *polynomial time* [CHK13,PLSS13].
- For *open IMCs*, quantitative reachability probabilities can be *approximated*.
 - Transforming an open IMC to a closed IMC by closing all intervals labelling transitions gives an arbitrarily close approximation [CK15].
- What about *exact* verification of *qualitative* reachability probabilities in open IMCs?

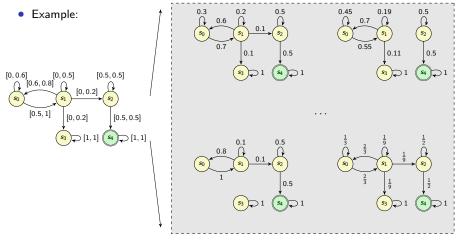
[[]CHK13]. T. Chen, T. Han, M. Kwiatkowska. On the Complexity of Model Checking Interval-valued Discrete Time Markov Chains. *Information Processing Letters*, 113(7), 2013.

[[]CK15]. S. Chakraborty and J.-P. Katoen. Model Checking of Open Interval Markov Chains. In Proc. ASMTA 2015.

[[]PLSS13]. A. Puggelli et al. Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties. In Proc. CAV 2013.

Uncertain Markov chain semantics of an IMC

- The *uncertain Markov chain* (UMC) semantics is an (uncountable) set of Markov chains.
 - Each Markov chain corresponds to a certain choice of probabilities from the intervals of each transition.



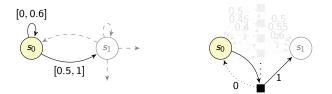
- The *interval Markov decision process* (IMDP) semantics is an MDP with an (uncountable) number of transition distributions.
 - The probabilities of each distribution associated with state *s* corresponds to a certain choice of probabilities from the intervals of the outgoing edges of *s*.
- Example: state so

- The *interval Markov decision process* (IMDP) semantics is an MDP with an (uncountable) number of transition distributions.
 - The probabilities of each distribution associated with state *s* corresponds to a certain choice of probabilities from the intervals of the outgoing edges of *s*.
- Example: state s₀

- The *interval Markov decision process* (IMDP) semantics is an MDP with an (uncountable) number of transition distributions.
 - The probabilities of each distribution associated with state *s* corresponds to a certain choice of probabilities from the intervals of the outgoing edges of *s*.
- Example: state s₀

- The *interval Markov decision process* (IMDP) semantics is an MDP with an (uncountable) number of transition distributions.
 - The probabilities of each distribution associated with state *s* corresponds to a certain choice of probabilities from the intervals of the outgoing edges of *s*.
- Example: state s₀

- The *interval Markov decision process* (IMDP) semantics is an MDP with an (uncountable) number of transition distributions.
 - The probabilities of each distribution associated with state *s* corresponds to a certain choice of probabilities from the intervals of the outgoing edges of *s*.
- Example: state s₀

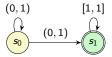


- The *interval Markov decision process* (IMDP) semantics is an MDP with an (uncountable) number of transition distributions.
 - The probabilities of each distribution associated with state *s* corresponds to a certain choice of probabilities from the intervals of the outgoing edges of *s*.
- Example: state s₀

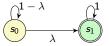
Uncountable set of distributions available in s_0 : between $\{s_0 \mapsto 0.5, s_1 \mapsto 0.5\}$ and $\{s_0 \mapsto 0, s_1 \mapsto 1\}$

UMC semantics vs. IMDP semantics: example

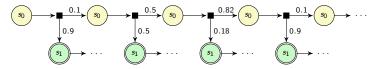
• Example IMC:



UMC semantics: for each λ ∈ (0, 1), [[O]]_{UMC} contains a Markov chain D_λ of the form:



• IMDP semantics: on each visit to *s*₀, can choose a different distribution, for example:



Qualitative reachability in interval Markov chains

•
$$S^{0,\mathrm{UMC}}_{\forall} = \{ s \in S \mid \forall \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \operatorname{Pr}^{\mathcal{D}}_{s}(\mathsf{Reach}(T)) = 0 \};$$

•
$$S^{0,\mathrm{UMC}}_{\exists} = \{ s \in S \mid \exists \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \operatorname{Pr}^{\mathcal{D}}_{s}(\mathsf{Reach}(T)) = 0 \};$$

•
$$S_{\exists}^{1,\mathrm{UMC}} = \{ s \in S \mid \exists \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \operatorname{Pr}_{s}^{\mathcal{D}}(\mathsf{Reach}(T)) = 1 \};$$

•
$$S^{1,\mathrm{UMC}}_{\forall} = \{ s \in S \mid \forall \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \operatorname{Pr}^{\mathcal{D}}_{s}(\mathsf{Reach}(T)) = 1 \}.$$

•
$$S^{0,\text{IMDP}}_{\forall} = \{s \in S \mid \forall \sigma \in \text{Sched}^{[\mathcal{O}]_{\text{IMDP}}} . \Pr_{s}^{\sigma}(\text{Reach}(\mathcal{T})) = 0\};$$

• $S^{0,\text{IMDP}}_{\exists} = \{s \in S \mid \exists \sigma \in \text{Sched}^{[\mathcal{O}]_{\text{IMDP}}} . \Pr_{s}^{\sigma}(\text{Reach}(\mathcal{T})) = 0\};$
• $S^{1,\text{IMDP}}_{\exists} = \{s \in S \mid \exists \sigma \in \text{Sched}^{[\mathcal{O}]_{\text{IMDP}}} . \Pr_{s}^{\sigma}(\text{Reach}(\mathcal{T})) = 1\};$
• $S^{1,\text{IMDP}}_{\forall} = \{s \in S \mid \forall \sigma \in \text{Sched}^{[\mathcal{O}]_{\text{IMDP}}} . \Pr_{s}^{\sigma}(\text{Reach}(\mathcal{T})) = 1\};$

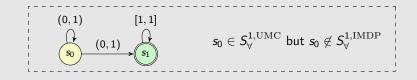
(where $\llbracket \mathcal{O} \rrbracket_{\rm UMC}$ is the UMC semantics of IMC \mathcal{O} , and Sched $\llbracket \mathcal{O} \rrbracket_{\rm IMDP}$ is the set of schedulers of $\llbracket \mathcal{O} \rrbracket_{\rm IMDP}$).

UMC and IMDP semantics coincide for all cases bar "universal/probability 1" $S_{\forall}^{0,\text{UMC}} = S_{\forall}^{0,\text{IMDP}}$, $S_{\exists}^{0,\text{UMC}} = S_{\exists}^{0,\text{IMDP}}$ and $S_{\exists}^{1,\text{UMC}} = S_{\exists}^{1,\text{IMDP}}$. There exists an open IMC such that $S_{\forall}^{1,\text{UMC}} \neq S_{\forall}^{1,\text{IMDP}}$.

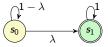
Qualitative reachability for open IMCs can be decided efficiently $S^{0,\text{UMC}}_{\forall}$, $S^{0,\text{UMC}}_{\exists}$, $S^{1,\text{UMC}}_{\exists}$, $S^{1,\text{UMC}}_{\forall}$, $S^{0,\text{IMDP}}_{\forall}$, $S^{0,\text{IMDP}}_{\exists}$, $S^{1,\text{IMDP}}_{\exists}$ and $S^{1,\text{IMDP}}_{\forall}$ be computed in polynomial time in the size of the IMC.

can

Open IMC witnessing $S^{1,\mathrm{UMC}}_{orall} eq S^{1,\mathrm{IMDP}}_{orall}$



• $s_0 \in S^{1,\mathrm{UMC}}_{\forall}$: recall that all Markov chains \mathcal{D}_{λ} in $\llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}}$ are of the form



for $\lambda \in (0, 1)$, hence $\operatorname{Pr}_{s_0}^{\mathcal{D}_{\lambda}}(\operatorname{Reach}(\{s_1\})) = \lim_{k \to \infty} 1 - (1 - \lambda)^k = 1$. • $s_0 \notin S_{\forall}^{1,\operatorname{IMDP}}$:

- Consider scheduler (with memory) σ that assigns $\frac{1}{2^i}$ probability to the *i*-th attempt to take the transition from s_0 to s_1 .
- $\Pr_{s_0}^{\sigma}(\mathsf{Reach}(\{s_1\})) = \frac{1}{2} + \frac{1}{2}(\frac{1}{4} + \frac{3}{4}(\frac{1}{8} + \cdots)) < 1.$

Qualitative reachability in interval Markov chains

- $S^{0,\mathrm{UMC}}_{\forall} = \{s \in S \mid \forall \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \Pr^{\mathcal{D}}_{s}(\mathsf{Reach}(T)) = 0\};$
- $S^{0,\mathrm{UMC}}_{\exists} = \{ s \in S \mid \exists \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \operatorname{Pr}^{\mathcal{D}}_{s}(\mathsf{Reach}(T)) = 0 \};$
- $S_{\exists}^{1,\text{UMC}} = \{s \in S \mid \exists \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\text{UMC}} . \Pr_{s}^{\mathcal{D}}(\text{Reach}(T)) = 1\};$
- $S^{1,\mathrm{UMC}}_{\forall} = \{ s \in S \mid \forall \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \operatorname{Pr}^{\mathcal{D}}_{s}(\mathsf{Reach}(T)) = 1 \}.$
- $S^{0,\mathrm{IMDP}}_{\forall} = \{ s \in S \mid \forall \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \Pr_{s}^{\sigma}(\mathsf{Reach}(T)) = 0 \};$
- $S_{\exists}^{0,\mathrm{IMDP}} = \{ s \in S \mid \exists \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \Pr_{s}^{\sigma}(\mathsf{Reach}(T)) = 0 \};$
- $S_{\exists}^{1,\mathrm{IMDP}} = \{ s \in S \mid \exists \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \Pr_{s}^{\sigma}(\mathsf{Reach}(T)) = 1 \};$
- $S^{1,\mathrm{IMDP}}_{\forall} = \{ s \in S \mid \forall \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \operatorname{Pr}^{\sigma}_{s}(\mathsf{Reach}(T)) = 1 \}.$

Universal quantification/probability 0

Complement sets:

•
$$S \setminus S_{\forall}^{0,\mathrm{UMC}} = \{ s \in S \mid \exists \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \Pr_{s}^{\mathcal{D}}(\mathrm{Reach}(T)) > 0 \}.$$

• $S \setminus S_{\forall}^{0,\mathrm{IMDP}} = \{ s \in S \mid \exists \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \Pr_s^{\sigma}(\mathsf{Reach}(T)) > 0 \}.$

Computation of $S \setminus S^{0,\text{UMC}}_{\forall}$ and $S \setminus S^{0,\text{IMDP}}_{\forall}$ by graph reachability

- $s \in S \setminus S_{\forall}^{0,\mathrm{UMC}}$ iff there exists a path in the graph of the IMC from s to T.
- $s \in S \setminus S_{\forall}^{0,\mathrm{IMDP}}$ iff there exists a path in the graph of the IMC from s to T.
- Consequence: $S^{0,\mathrm{UMC}}_{\forall} = S^{0,\mathrm{IMDP}}_{\forall}$; can be computed in polynomial time.

Qualitative reachability in interval Markov chains

•
$$S^{0,\mathrm{UMC}}_{\forall} = \{ s \in S \mid \forall \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \Pr^{\mathcal{D}}_{s}(\mathsf{Reach}(T)) = 0 \};$$

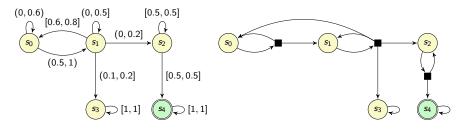
- $S_{\exists}^{0,\mathrm{UMC}} = \{s \in S \mid \exists \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \operatorname{Pr}_{s}^{\mathcal{D}}(\mathsf{Reach}(T)) = 0\};$
- $S_{\exists}^{1,\text{UMC}} = \{s \in S \mid \exists \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\text{UMC}} . \Pr_{s}^{\mathcal{D}}(\text{Reach}(T)) = 1\};$

•
$$S^{1,\text{UMC}}_{\forall} = \{ s \in S \mid \forall \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\text{UMC}} . \Pr^{\mathcal{D}}_{s}(\text{Reach}(T)) = 1 \}.$$

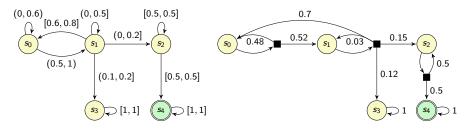
•
$$S^{0,\mathrm{IMDP}}_{\forall} = \{ s \in S \mid \forall \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \operatorname{Pr}^{\sigma}_{s}(\mathsf{Reach}(T)) = 0 \}$$

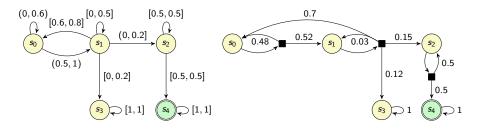
- $S_{\exists}^{0,\mathrm{IMDP}} = \{ s \in S \mid \exists \sigma \in \mathsf{Sched}^{[\mathcal{O}]_{\mathrm{IMDP}}} . \Pr_s^{\sigma}(\mathsf{Reach}(T)) = 0 \};$
- $S_{\exists}^{1,\mathrm{IMDP}} = \{ s \in S \mid \exists \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \Pr_{s}^{\sigma}(\mathsf{Reach}(T)) = 1 \};$
- $S^{1,\mathrm{IMDP}}_{\forall} = \{ s \in S \mid \forall \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \operatorname{Pr}^{\sigma}_{s}(\mathsf{Reach}(T)) = 1 \}.$

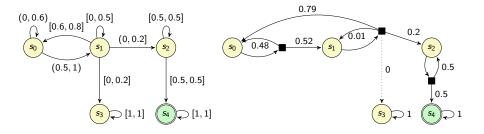
- Valid edge set: set of edges with
 - Same source state;
 - 2 At least one assignment of positive probabilities to edges that respects the edges' intervals.
- Qualitative MDP abstraction: represent each valid edge set by an (arbitrary) *representative distribution* over the set's edges.
 - Justification: in finite MDPs, exact (positive) probability values are immaterial for qualitative reachability properties.
- Example:

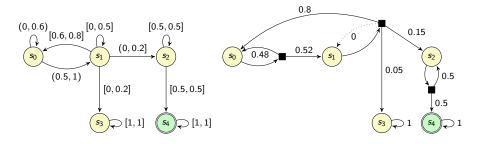


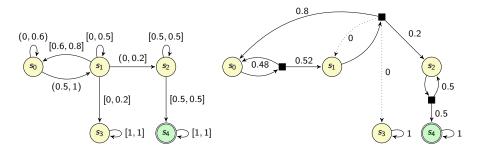
- Valid edge set: set of edges with
 - Same source state;
 - 2 At least one assignment of positive probabilities to edges that respects the edges' intervals.
- Qualitative MDP abstraction: represent each valid edge set by an (arbitrary) *representative distribution* over the set's edges.
 - Justification: in finite MDPs, exact (positive) probability values are immaterial for qualitative reachability properties.
- Example:

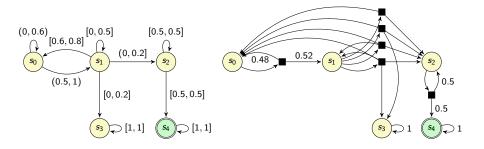












Preservation of existential qualitative reachability

Let $\lambda \in \{0,1\}$. There exists a scheduler $\sigma \in \text{Sched}^{\text{QMA}(\mathcal{O})}$ of the qualitative MDP abstraction such that $\Pr_s^{\sigma}(\text{Reach}(\mathcal{T})) = \lambda$ if and only if:

- there exists $\mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}}$ such that $\mathrm{Pr}_{s}^{\mathcal{D}}(\mathsf{Reach}(\mathcal{T})) = \lambda$;
- there exists $\sigma' \in \text{Sched}^{[\mathcal{O}]_{\text{IMDP}}}$ such that $\Pr_s^{\sigma'}(\text{Reach}(\mathcal{T})) = \lambda$.
- Hence:

•
$$S_{\exists}^{\lambda,\text{UMC}} = \{s \in S \mid \exists \sigma \in \text{Sched}^{\text{QMA}(\mathcal{O})} . \Pr_{s}^{\sigma}(\text{Reach}(T)) = \lambda\};$$

• $S_{\exists}^{\lambda,\text{IMDP}} = \{s \in S \mid \exists \sigma \in \text{Sched}^{\text{QMA}(\mathcal{O})} . \Pr_{s}^{\sigma}(\text{Reach}(T)) = \lambda\}.$

Proposal: compute {s ∈ S | ∃σ ∈ Sched^{QMA(O)}. Pr^σ_s(Reach(T)) = λ} by analysing the qualitative MDP abstraction using established techniques for qualitative reachability properties of finite MDPs.

Preservation of existential qualitative reachability

Let $\lambda \in \{0,1\}$. There exists a scheduler $\sigma \in \text{Sched}^{\text{QMA}(\mathcal{O})}$ of the qualitative MDP abstraction such that $\Pr_s^{\sigma}(\text{Reach}(\mathcal{T})) = \lambda$ if and only if:

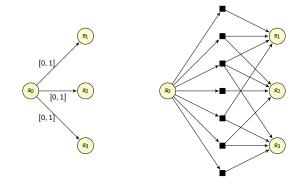
- there exists $\mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}}$ such that $\mathrm{Pr}_{s}^{\mathcal{D}}(\mathsf{Reach}(\mathcal{T})) = \lambda;$
- there exists $\sigma' \in \text{Sched}^{[\mathcal{O}]_{\text{IMDP}}}$ such that $\Pr_s^{\sigma'}(\text{Reach}(\mathcal{T})) = \lambda$.
- Hence:

•
$$S_{\exists}^{\lambda,\text{UMC}} = \{s \in S \mid \exists \sigma \in \text{Sched}^{\text{QMA}(\mathcal{O})} . \Pr_{s}^{\sigma}(\text{Reach}(T)) = \lambda\};$$

• $S_{\exists}^{\lambda,\text{IMDP}} = \{s \in S \mid \exists \sigma \in \text{Sched}^{\text{QMA}(\mathcal{O})} . \Pr_{s}^{\sigma}(\text{Reach}(T)) = \lambda\}.$

- Proposal: compute {s ∈ S | ∃σ ∈ Sched^{QMA(O)}. Pr^σ_s(Reach(T)) = λ} by analysing the qualitative MDP abstraction using established techniques for qualitative reachability properties of finite MDPs.
- But ...

- Size of the qualitative MDP abstraction: exponential in the size of the IMC.
 - If an IMC state has n eliminable edges, the corresponding state of the qualitative MDP abstraction has in the worst case 2ⁿ - 1 outgoing distributions (depends on the endpoints of the intervals).
 - Example with *n* = 3:



- Obtain algorithms applied to the qualitative MDP abstraction that run in polynomial time *in the size of the IMC*?
 - Sufficient to compute predecessor operations in polynomial time in the size of the IMC (precedent in the quantitative context in [HM18]).
- Example of predecessor operation: CPre (used for probability 0 case).
 - For X ⊆ S, CPre(X) is the set of states for which there exists a distribution such that all of the distributions edges lead to states in X.
 - Formally, $CPre(X) = \{s \in S \mid \exists \mu \in \Delta_{QMA}(s) : support(\mu) \subseteq X\}$, where $\Delta_{QMA}(s)$ is the set of distributions available in state s in QMA(\mathcal{O}).

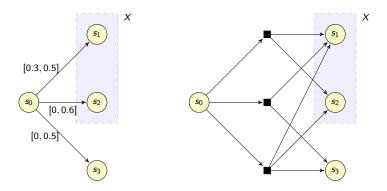
CPre(X) can be computed in polynomial time in the size of the IMC

Given $s \in S$, we have $s \in CPre(X)$ if and only if

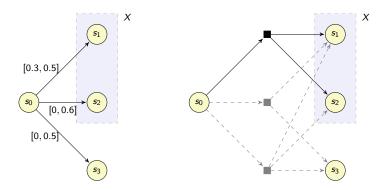
- **1** edges from s to $S \setminus X$ are eliminable, and
- 2 the sum of the right endpoints of edges from s to X is at least 1 (strictly greater than 1 if at least one edge from s to X is right open).

[[]HM18]. B. Monmege and S. Haddad. Interval iteration algorithm for MDPs and IMDPs. *Theoretical Computer Science*, 735, 2018.

- Recall: $s \in CPre(X)$ if and only if
 - **1** edges from s to $S \setminus X$ are eliminable, and
 - 2 the sum of the right endpoints of edges from s to X is at least 1 (strictly greater than 1 if at least one edge from s to X is right open).
- Example:



- Recall: $s \in CPre(X)$ if and only if
 - **1** edges from s to $S \setminus X$ are eliminable, and
 - 2 the sum of the right endpoints of edges from s to X is at least 1 (strictly greater than 1 if at least one edge from s to X is right open).
- Example:



Qualitative reachability in interval Markov chains

•
$$S^{0,\mathrm{UMC}}_{\forall} = \{ s \in S \mid \forall \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \Pr^{\mathcal{D}}_{s}(\mathsf{Reach}(T)) = 0 \};$$

- $S_{\exists}^{0,\mathrm{UMC}} = \{s \in S \mid \exists \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \operatorname{Pr}_{s}^{\mathcal{D}}(\mathsf{Reach}(T)) = 0\};$
- $S_{\exists}^{1,\text{UMC}} = \{s \in S \mid \exists \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\text{UMC}} \text{.} \Pr_{s}^{\mathcal{D}}(\text{Reach}(T)) = 1\};$
- $S^{1,\mathrm{UMC}}_{\forall} = \{ s \in S \mid \forall \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \operatorname{Pr}^{\mathcal{D}}_{s}(\mathsf{Reach}(T)) = 1 \}.$

•
$$S^{0,\mathrm{IMDP}}_{\forall} = \{s \in S \mid \forall \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \operatorname{Pr}^{\sigma}_{s}(\mathsf{Reach}(T)) = 0\}$$

- $S_{\exists}^{0,\mathrm{IMDP}} = \{ s \in S \mid \exists \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \Pr_{s}^{\sigma}(\mathsf{Reach}(T)) = 0 \};$
- $S_{\exists}^{1,\mathrm{IMDP}} = \{ s \in S \mid \exists \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \Pr_{s}^{\sigma}(\mathsf{Reach}(T)) = 1 \};$
- $S^{1,\mathrm{IMDP}}_{\forall} = \{ s \in S \mid \forall \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} \text{ . } \Pr^{\sigma}_{s}(\mathsf{Reach}(T)) = 1 \}.$

Universal quantification/probability 1: UMC semantics

- Aim: computation of $S^{1,\mathrm{UMC}}_{\forall} = \{ s \in S \mid \forall \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \operatorname{Pr}_{s}^{\mathcal{D}}(\mathsf{Reach}(\mathcal{T})) = 1 \}.$
- Compute $S \setminus S^{1,\mathrm{UMC}}_{\forall}$, i.e., $\{s \in S \mid \exists \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \operatorname{Pr}^{\mathcal{D}}_{s}(\mathsf{Reach}(\mathcal{T})) < 1\}$.

Universal quantification/probability 1: UMC semantics

There exists $\mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}}$ such that $\mathrm{Pr}_s^{\mathcal{D}}(\mathrm{Reach}(\mathcal{T})) < 1$ if and only if there exists a finite path of the graph of \mathcal{O} from s to a state in $S_{\exists}^{0,\mathrm{UMC}}$.

 Algorithm for computing S^{1,UMC}_∀: take the complement of the set of states that can reach S^{0,UMC}_∃ in the graph of the IMC.

Qualitative reachability in interval Markov chains

•
$$S^{0,\text{UMC}}_{\forall} = \{s \in S \mid \forall \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\text{UMC}} . \Pr^{\mathcal{D}}_{s}(\text{Reach}(T)) = 0\};$$

• $S^{0,\text{UMC}}_{\exists} = \{s \in S \mid \exists \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\text{UMC}} . \Pr^{\mathcal{D}}_{s}(\text{Reach}(T)) = 0\};$
• $S^{1,\text{UMC}}_{\exists} = \{s \in S \mid \exists \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\text{UMC}} . \Pr^{\mathcal{D}}_{s}(\text{Reach}(T)) = 1\};$

•
$$S^{1,\mathrm{UMC}}_{\forall} = \{ s \in S \mid \forall \mathcal{D} \in \llbracket \mathcal{O} \rrbracket_{\mathrm{UMC}} . \operatorname{Pr}^{\mathcal{D}}_{s}(\mathsf{Reach}(\mathcal{T})) = 1 \}.$$

•
$$S^{0,\mathrm{IMDP}}_{\forall} = \{ s \in S \mid \forall \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \operatorname{Pr}^{\sigma}_{s}(\mathsf{Reach}(T)) = 0 \};$$

•
$$S_{\exists}^{0,\mathrm{IMDP}} = \{ s \in S \mid \exists \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \operatorname{Pr}_{s}^{\sigma}(\mathsf{Reach}(T)) = 0 \};$$

•
$$S_{\exists}^{1,\mathrm{IMDP}} = \{ s \in S \mid \exists \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \Pr_{s}^{\sigma}(\mathsf{Reach}(T)) = 1 \};$$

• $S_{\forall}^{1,\mathrm{IMDP}} = \{ s \in S \mid \forall \sigma \in \mathsf{Sched}^{[\mathcal{O}]_{\mathrm{IMDP}}} . \Pr_{s}^{\sigma}(\mathsf{Reach}(T)) = 1 \}.$

Universal quantification/probability 1: IMDP semantics

- Aim: computation of $S^{1,\mathrm{IMDP}}_{\forall} = \{s \in S \mid \forall \sigma \in \mathsf{Sched}^{\llbracket \mathcal{O} \rrbracket_{\mathrm{IMDP}}} . \operatorname{Pr}_{s}^{\sigma}(\mathsf{Reach}(T)) = 1\}.$
- Compute $S \setminus S_{\forall}^{1,\text{IMDP}}$, i.e., $\{s \in S \mid \exists \sigma \in \text{Sched}^{\llbracket \mathcal{O} \rrbracket_{\text{IMDP}}} . \Pr_{s}^{\sigma}(\text{Reach}(\mathcal{T})) < 1\}.$
- U_{¬T}: state set, not including any states in T, in which the IMC can confine itself with positive probability (defined on the next slide).

Universal quantification/probability 1: IMDP semantics

There exists $\sigma \in \text{Sched}^{\llbracket \mathcal{O} \rrbracket_{\text{IMDP}}}$ such that $\Pr_s^{\sigma}(\text{Reach}(T)) < 1$ if and only if there exists a finite path of the graph of \mathcal{O} from s to a state in $U_{\neg T}$.

 Algorithm for computing S^{1,IMDP}_∀: take the complement of the set of states that can reach U_{¬T} in the graph of the IMC.

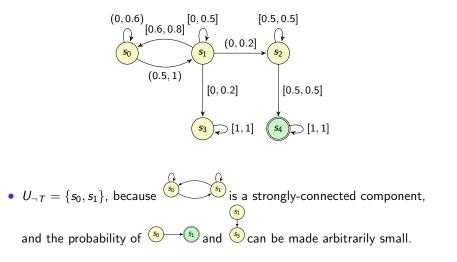
Universal quantification/probability 1: IMDP semantics

- Characterisation and computation of the set $U_{\neg T}$?
- Strongly-connected components with no state in *T* for which the probability of outgoing edges can be made arbitrarily small (requires left endpoint 0, but can be left-open).
- Example:

• $U_{\neg T} = \{s_0\}$, because s_0 is a strongly-connected component, and the probability of s_0 s_1 can be made arbitrarily small.

Universal quantification/probability 1: IMDP semantics

Example:



- Exact and efficient computation of state sets satisfying qualitative reachability properties for open IMCs.
- Future work:
 - Qualitative ω -regular properties.
 - Exact computation of state sets satisfying *quantitative* reachability properties for open IMCs.