Reachability Analysis of Nonlinear ODEs using Polytopic Based Validated Runge-Kutta

Julien Alexandre dit Sandretto¹ and Jian Wan²

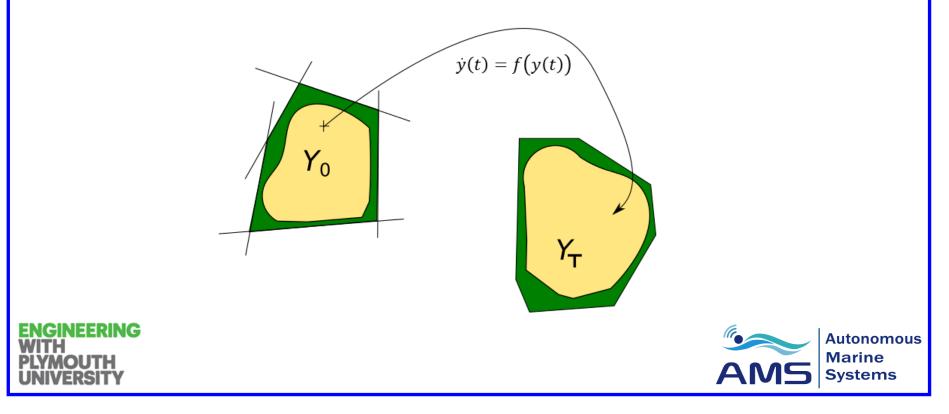
¹ENSTA ParisTech, France ²School of Engineering, The University of Plymouth, UK

Outline

- Initial Value Problems
- Set Computation Techniques
- Zonotopic Based Validated Runge-Kutta
- Nonlinear ODE Reachability of Polytopes
- Conclusion and Future Work

Initial Value Problems

- The initial value problem for a dynamic system $\dot{y}(t) = f(y(t))$, $y(0) = y_0$:
 - If the initial value y(0) is a set Y_0 , i.e. $\dot{y}(t) = f(y(t)), y(0) \in Y_0$
 - Then the solution y(T) at a given time instant T will also be a set $Y_T = \{y(\tau), y(0) \in Y_0\}$
- How to compute the solution set *Y*_T is a reachability problem involving set computation



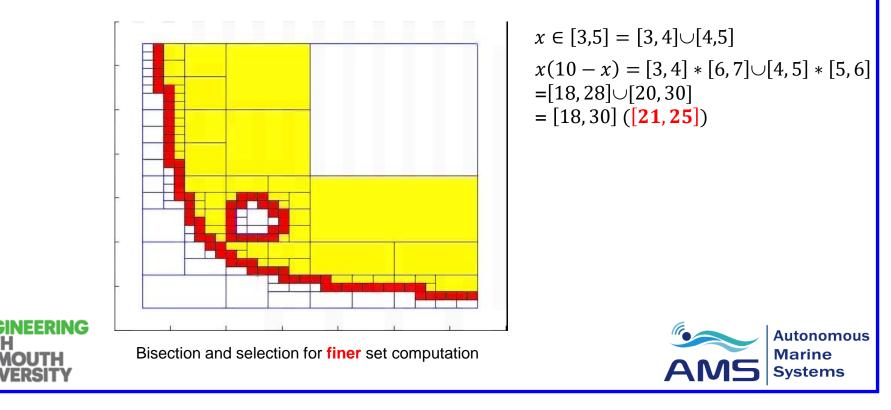
Set Computation Techniques

• For a nonlinear system $X_k = f(X_{k-1})$ where X_{k-1} is a set, currently there are two main set computation techniques:

$X_k = f(X_{k-1})$	The input set X_{k-1}	The output set X_k	Methods
Interval set computation	An interval set:	Another interval set:	Using interval arithmetic
Zonotopic set computation	A zonotopic set:	Another zonotopic set:	Using Kuhn's method or affine arithmetic

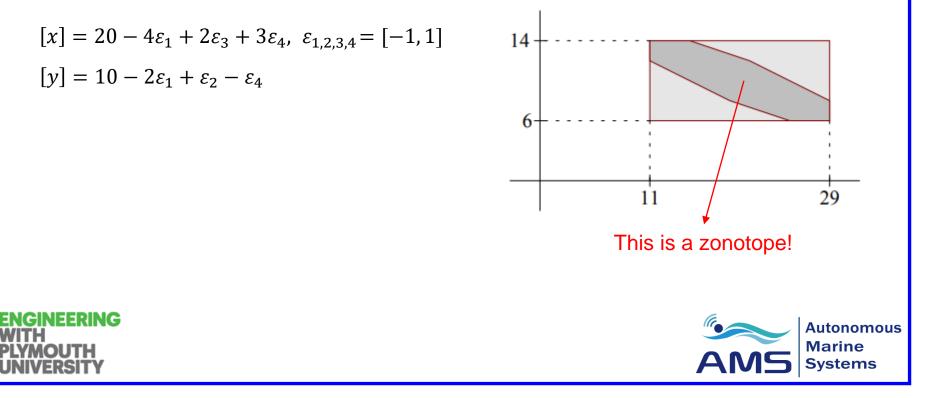
Set Computation Techniques – Interval Arithmetic

- The solution from interval arithmetic can be greatly overestimated, which is called the wrapping effect:
 - For example: $x \in [3,5]$, $f(x) = x(10 x) = [3,5] * [5,7] \in [15,35]$ ([21,25])
- The correlation between two computing quantities has not been tracked in interval arithmetic, which contributes to the wrapping effect.



Set Computation Techniques – Affine Arithmetic

- Affine arithmetic is an extension of interval arithmetic by representing an interval by a first-order polynomial, i.e. [x] = x₀ + x₁ * [-1,1] + x₂ * [-1,1] + ... + x_n * [-1,1]
 - For example: $x \in [3,5]$, $x(10-x) = (4 + [-1,1]) * (6 [-1,1]) \in [21,26]$ ([21,25])
- Affine arithmetic is also closely related to zonotope geometry as its high-order representation is a zonotope.



Set Computation Techniques – Zonotopic Set Computation

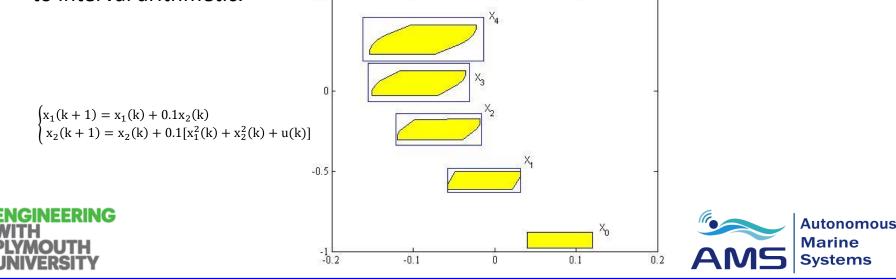
A zonotope is a centrally symmetric convex polytope with an advantageous mathematical representation, i.e. [x] = p + h₁ * [-1, 1] + ··· + h_m * [-1,1]

$$[x] = 20 - 4\varepsilon_1 + 2\varepsilon_3 + 3\varepsilon_4, \ \varepsilon_{1,2,3,4} = [-1,1]$$

$$[y] = 10 - 2\varepsilon_1 + \varepsilon_2 - \varepsilon_4$$

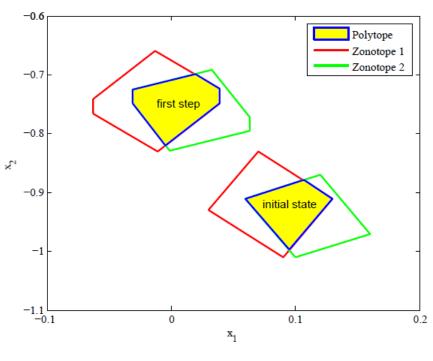
$$[\mathbf{x}] = \begin{bmatrix} 20\\10 \end{bmatrix} + \begin{bmatrix} -4\\-2 \end{bmatrix} * [-1,1] + \begin{bmatrix} 0\\1 \end{bmatrix} * [-1,1] + \begin{bmatrix} 2\\0 \end{bmatrix} * [-1,1] + \begin{bmatrix} 3\\-1 \end{bmatrix} * [-1,1]$$

 Using Kuhn's method or affine arithmetic, the evolution of a zonotopic set for a nonlinear system can be computed and the wrapping effect can be reduced compared to interval arithmetic.



Set Computation Techniques – Polytopic Set Computation

• Polytopic set computation cannot be computed directly for a nonlinear system $X_k = f(X_{k-1})$ where X_{k-1} is a polytope. However, representing the polytope exactly by the intersection of zonotopes, polytopic set computation can be implemented indirectly via zonotopic set computation for a nonlinear system:



ENGINEERING WITH PLYMOUTH UNIVERSITY

 $f(P) = f(z_1 \cap z_2) \subseteq f(z_1) \cap f(z_2)$

Zonotopic based Validated Runge-Kutta

- The initial value problem for a dynamic system $\dot{y}(t) = f(y(t))$, $y(0) = y_0$:
 - The initial value y(0) is a set Y_0 , where Y_0 is a zonotope
 - A Runge-Kutta scheme $y_{1+1} = y_1 + h \sum_{i=1}^{s} b_i k_i$, $k_i = f(t_1 + c_i h, y_1 + h \sum_{j=1}^{s} a_{ij} k_j)$
 - Runge-Kutta 4 0 0 0 0 0 1/21/20 0 0 1/2 1/2 0 0 0 0 0 1 0 1/6 1/3 1/31/6
 - Coefficients a_{ij} , b_i and c_i are given by Butcher tableau

 The scheme can be computed iteratively using affine arithmetic for tracking correlations and the local truncation error is to be bounded by the Picard-Lindelof operator (all implemented in Dynibex <u>http://perso.ensta-paristech.fr/~chapoutot/dynibex/</u>).

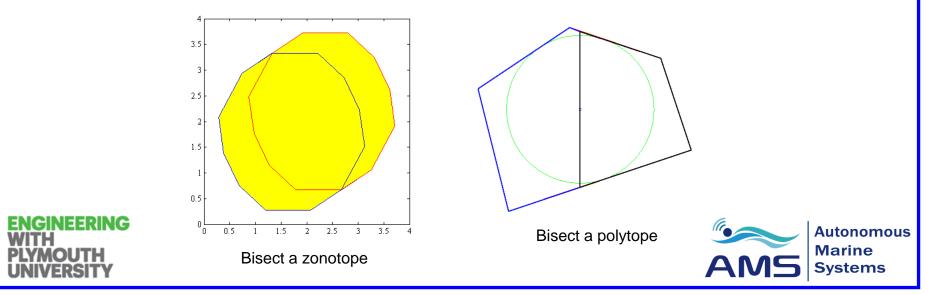
Zonotopic based Validated Runge-Kutta – Example

- The Volterra system: $\begin{cases} \dot{y_1} = 2y_1(1-y_2) \\ \dot{y_2} = -y_2(1-y_1)' \\ Z_0 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \otimes \begin{bmatrix} 0.04 & 0.02 \\ 0.02 & 0.02 \end{bmatrix} B^2$
- One-step reachable set with h = 0.00245s:

$$y(h) = \begin{bmatrix} 0.9902440\\ 2.9999640 \end{bmatrix} \otimes \begin{bmatrix} 0.0395119 & 0.01970740\\ 0.0202920 & 0.02014574 \end{bmatrix} B^2 + \begin{pmatrix} [-2e - 06, 2e06]\\ [-2e - 06, 2e06] \end{pmatrix}$$

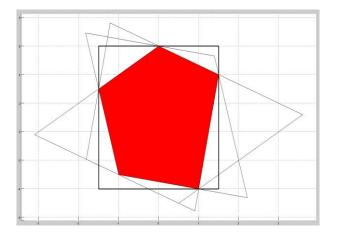
Nonlinear ODE Reachability of Polytopes – Principle

- The initial value problem for a dynamic system $\dot{y}(t) = f(y(t))$, $y(0) = y_0$:
 - The initial value y(0) is a set Y_0 , where Y_0 is a polytope P
- The principle for nonlinear ODE reachability of polytopes is as follows:
 - First, represent the polytope by the intersection of *m* zonotopes $P = Z_1 \cap ... \cap Z_m$;
 - Second, compute the individual reachable set $\operatorname{Reach}(Z_i, h)$ for each zonotope
 - If the integration fails, bisect the zonotope or the original polytope and then to compute the union of reachable sets
 - Third, compute the intersection of all reachable sets $\operatorname{Reach}(P) = \operatorname{Reach}(Z_1) \cap \ldots \cap \operatorname{Reach}(Z_m)$

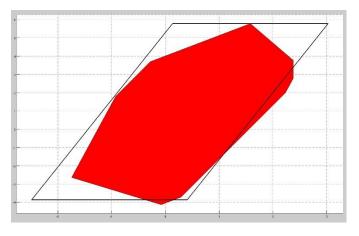


Nonlinear ODE Reachability of Polytopes – Example 1

• The circle problem
$$\begin{cases} \dot{y_1} = 2y_1(1 - y_2) \\ \dot{y_2} = -y_2(1 - y_1) \end{cases}$$
:



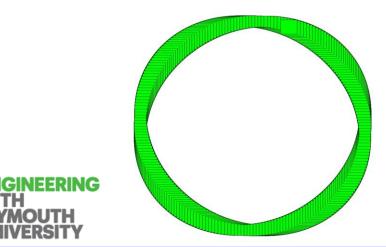
The initial set of a polytope



The solution set at t = 50s

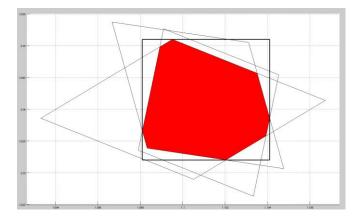
Initial polytope (IP)	21.25
Initial hull (IH)	30
Polytope (P) from IP	22.5046
Zonotope (Z) from IH	27.9348
Intersection of P and Z	21.8109

Autonomous Marine Systems

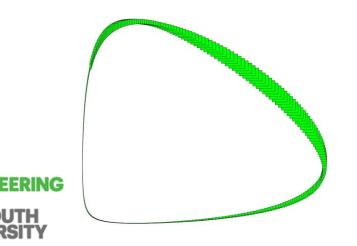


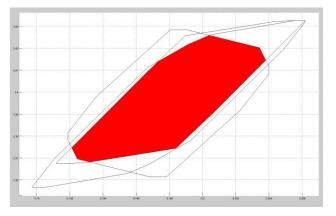
Nonlinear ODE Reachability of Polytopes – Example 2

• The Volterra system $\begin{cases} \dot{y_1} = 2y_1(1 - y_2) \\ \dot{y_2} = -y_2(1 - y_1) \end{cases}$:



The initial set of a polytope





The solution set at t = 6s

Initial polytope (IP)	8.2505e-05
Initial hull (IH)	1.1400e-04
Polytope (P) from IP	3.2273e-04
Zonotope (Z) from IH	5.8018e-04
Intersection of P and Z	3.0337e-04

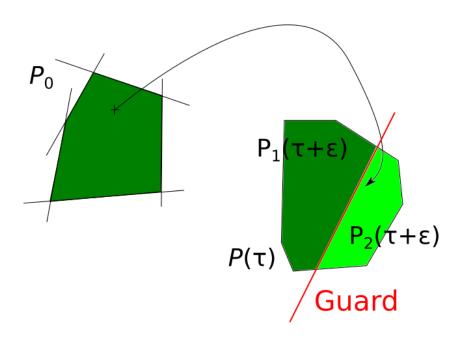
Autonomous Marine Systems

Conclusion and Future Work

- Built on zonotopic based validated Runge-Kutta method and polytope geometry
- Capable of computing reachability of nonlinear ODEs with a polytope as the initial value
- Have good results in terms of volumes for second-order systems

Conclusion and Future Work

- Apply to more examples of higher dimension and benchmark problems
- Reachability problems for hybrid systems
- Constrained reachability problems



12th International Conference on Reachability Problems, 24-26 September 2018, Marseille, France

RESEARCH WITH PLYMOUTH UNIVERSITY

Thank you! Any questions?

