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Knapsack problem

Our setting

Let G be a finitely generated (f.g.) group.

Fix a finite generating set Σ for G with a ∈ Σ⇔ a−1 ∈ Σ.

Elements of G are represented by finite words over Σ.
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Knapsack problem

Our setting

Let G be a finitely generated (f.g.) group.

Fix a finite generating set Σ for G with a ∈ Σ⇔ a−1 ∈ Σ.

Elements of G are represented by finite words over Σ.

Knapsack problem for G (Myasnikov, Nikolaev, Ushakov 2013)

INPUT: Group elements g ,g1,g2, . . . ,gk ∈ G

QUESTION: ∃x1, . . . xk ∈ N ∶ g = g
x1
1
gx2
2
⋯gxk

k
?
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Knapsack problem

Our setting

Let G be a finitely generated (f.g.) group.

Fix a finite generating set Σ for G with a ∈ Σ⇔ a−1 ∈ Σ.

Elements of G are represented by finite words over Σ.

Knapsack problem for G (Myasnikov, Nikolaev, Ushakov 2013)

INPUT: Group elements g ,g1,g2, . . . ,gk ∈ G

QUESTION: ∃x1, . . . xk ∈ N ∶ g = g
x1
1
gx2
2
⋯gxk

k
?

Decidability/complexity of knapsack does not depend on the
chosen generating set for G .
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Related problems

Rational subset membership problem for G

INPUT: Group element g ∈ G and a finite automaton A with
transitions labelled by elements from Σ.

QUESTION: Does g ∈ L(A) hold?
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Related problems

Rational subset membership problem for G

INPUT: Group element g ∈ G and a finite automaton A with
transitions labelled by elements from Σ.

QUESTION: Does g ∈ L(A) hold?

At least as difficult as knapsack:
Take a finite automaton for g∗

1
g∗
2
⋯g∗k .
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Related problems

Rational subset membership problem for G

INPUT: Group element g ∈ G and a finite automaton A with
transitions labelled by elements from Σ.

QUESTION: Does g ∈ L(A) hold?

At least as difficult as knapsack:
Take a finite automaton for g∗

1
g∗
2
⋯g∗k .

Knapsack problem for G with integer exponents

INPUT: Group elements g ,g1, . . . gk

QUESTION: ∃x1, . . . , xk ∈ Z ∶ g = g
x1
1
⋯gxk

k
?
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Related problems

Rational subset membership problem for G

INPUT: Group element g ∈ G and a finite automaton A with
transitions labelled by elements from Σ.

QUESTION: Does g ∈ L(A) hold?

At least as difficult as knapsack:
Take a finite automaton for g∗

1
g∗
2
⋯g∗k .

Knapsack problem for G with integer exponents

INPUT: Group elements g ,g1, . . . gk

QUESTION: ∃x1, . . . , xk ∈ Z ∶ g = g
x1
1
⋯gxk

k
?

Easier than knapsack:
Replace gx (with x ∈ Z) by gx1(g−1)x2 (with x1, x2 ∈ N).

Markus Lohrey Knapsack Problems in Hyperbolic Groups



Knapsack over Z

The classical knapsack problem

INPUT: Integers a,a1, . . . ak ∈ Z

QUESTION: ∃x1, . . . xk ∈ N ∶ a = x1 ⋅ a1 +⋯+ xk ⋅ ak?
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Knapsack over Z

The classical knapsack problem

INPUT: Integers a,a1, . . . ak ∈ Z

QUESTION: ∃x1, . . . xk ∈ N ∶ a = x1 ⋅ a1 +⋯+ xk ⋅ ak?

This problem is known to be decidable and the complexity depends
on the encoding of the integers a,a1, . . . ak ∈ Z:

Binary encoding of integers (e.g. 5 =̂ 101): NP-complete

Unary encoding of integers (e.g. 5 =̂ 11111): P

Exact complexity is TC0 (Elberfeld, Jakoby, Tantau 2011).
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Knapsack over Z

The classical knapsack problem

INPUT: Integers a,a1, . . . ak ∈ Z

QUESTION: ∃x1, . . . xk ∈ N ∶ a = x1 ⋅ a1 +⋯+ xk ⋅ ak?

This problem is known to be decidable and the complexity depends
on the encoding of the integers a,a1, . . . ak ∈ Z:

Binary encoding of integers (e.g. 5 =̂ 101): NP-complete

Unary encoding of integers (e.g. 5 =̂ 11111): P

Exact complexity is TC0 (Elberfeld, Jakoby, Tantau 2011).

Complexity bounds carry over to Z
m for every fixed m.
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Knapsack over Z

The classical knapsack problem

INPUT: Integers a,a1, . . . ak ∈ Z

QUESTION: ∃x1, . . . xk ∈ N ∶ a = x1 ⋅ a1 +⋯+ xk ⋅ ak?

This problem is known to be decidable and the complexity depends
on the encoding of the integers a,a1, . . . ak ∈ Z:

Binary encoding of integers (e.g. 5 =̂ 101): NP-complete

Unary encoding of integers (e.g. 5 =̂ 11111): P

Exact complexity is TC0 (Elberfeld, Jakoby, Tantau 2011).

Complexity bounds carry over to Z
m for every fixed m.

Note: Our definition of knapsack corresponds to the unary variant.
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Compressed knapsack problem

Is there a knapsack variant for arbitrary groups that corresponds to
the binary knapsack version for Z?
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Compressed knapsack problem

Is there a knapsack variant for arbitrary groups that corresponds to
the binary knapsack version for Z?

Represent the group elements g ,g1, . . . ,gk by compressed words
over the generators.
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Compressed knapsack problem

Is there a knapsack variant for arbitrary groups that corresponds to
the binary knapsack version for Z?

Represent the group elements g ,g1, . . . ,gk by compressed words
over the generators.

Compressed words: straight-line programs (SLP) = context-free
grammars that produce a single word.

Markus Lohrey Knapsack Problems in Hyperbolic Groups



Compressed knapsack problem

Is there a knapsack variant for arbitrary groups that corresponds to
the binary knapsack version for Z?

Represent the group elements g ,g1, . . . ,gk by compressed words
over the generators.

Compressed words: straight-line programs (SLP) = context-free
grammars that produce a single word.

Example 1: An SLP for a32:
S → AA, A→ BB , B → CC , C → DD, D → EE , E → a.
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Compressed knapsack problem

Is there a knapsack variant for arbitrary groups that corresponds to
the binary knapsack version for Z?

Represent the group elements g ,g1, . . . ,gk by compressed words
over the generators.

Compressed words: straight-line programs (SLP) = context-free
grammars that produce a single word.

Example 1: An SLP for a32:
S → AA, A→ BB , B → CC , C → DD, D → EE , E → a.

Example 2: An SLP for babbabab:
Ai → Ai+1Ai+2 for 1 ≤ i ≤ 4, A5 → b, A6 → a
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Compressed knapsack problem

Is there a knapsack variant for arbitrary groups that corresponds to
the binary knapsack version for Z?

Represent the group elements g ,g1, . . . ,gk by compressed words
over the generators.

Compressed words: straight-line programs (SLP) = context-free
grammars that produce a single word.

Example 1: An SLP for a32:
S → AA, A→ BB , B → CC , C → DD, D → EE , E → a.

Example 2: An SLP for babbabab:
Ai → Ai+1Ai+2 for 1 ≤ i ≤ 4, A5 → b, A6 → a

In compressed knapsack the group elements g ,g1, . . . ,gk are
encoded by SLPs that produce words over Σ.
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Some known results

Knapsack is decidable for

all virtually special groups
= finite extensions of subgroups of right-angled Artin groups

all co-context-free groups
= groups where complement of word problem is context-free

all Baumslag-Solitar groups BS(1,q) = ⟨a, t ∣ t−1at = aq⟩

the discrete Heisenberg group H3(Z)

Knapsack is undecidable for

H3(Z)
k where k is a fixed large enough number.
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Hyperbolic groups

Cayley graph

The Cayley graph Γ = Γ(G ,Σ) of G (w.r.t. Σ) is the graph with

node set G and

edge set E = {(g ,ga) ∣ g ∈ G ,a ∈ Σ}.
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Hyperbolic groups

Cayley graph

The Cayley graph Γ = Γ(G ,Σ) of G (w.r.t. Σ) is the graph with

node set G and

edge set E = {(g ,ga) ∣ g ∈ G ,a ∈ Σ}.

With dΓ(g ,h) we denote the distance in Γ (length of a shortest
path) between g ∈ G and h ∈ G .
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Hyperbolic groups

Cayley graph

The Cayley graph Γ = Γ(G ,Σ) of G (w.r.t. Σ) is the graph with

node set G and

edge set E = {(g ,ga) ∣ g ∈ G ,a ∈ Σ}.

With dΓ(g ,h) we denote the distance in Γ (length of a shortest
path) between g ∈ G and h ∈ G .

Geodesic triangles and slim triangles

A geodesic triangle ∆ consists of points p,q, r ∈ G and paths Pp,q,
Pp,r , Pq,r (the sides of the triangle), where Px ,y is a path between
x and y of length dΓ(x , y) (a geodesic path).
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Hyperbolic groups

Cayley graph

The Cayley graph Γ = Γ(G ,Σ) of G (w.r.t. Σ) is the graph with

node set G and

edge set E = {(g ,ga) ∣ g ∈ G ,a ∈ Σ}.

With dΓ(g ,h) we denote the distance in Γ (length of a shortest
path) between g ∈ G and h ∈ G .

Geodesic triangles and slim triangles

A geodesic triangle ∆ consists of points p,q, r ∈ G and paths Pp,q,
Pp,r , Pq,r (the sides of the triangle), where Px ,y is a path between
x and y of length dΓ(x , y) (a geodesic path).

∆ is δ-slim for δ ≥ 0 if every point on a side Px ,y has distance at
most δ from a point belonging to one of the two opposite sides.
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Hyperbolic groups

Hyperbolic groups (Gromov 1987)

A group is hyperbolic if there is a constant δ such that every
geodesic triangle is δ-slim.

The shape of a geodesic triangle in a hyperbolic group:

p q

r

Pp,q

Pp,r Pq,r
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Some facts about hyperbolic groups

Let G be hyperbolic. Then, either

1 F2 ≤ G (nonelementary hyperbolic groups) or

2 Z ≤ G with [G ∶ Z] finite (elementary hyperbolic groups)
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Some facts about hyperbolic groups

Let G be hyperbolic. Then, either

1 F2 ≤ G (nonelementary hyperbolic groups) or

2 Z ≤ G with [G ∶ Z] finite (elementary hyperbolic groups)

The word problem for a hyperbolic group can be solved in

1 linear time and

2 belongs to the complexity class LogCFL ⊆ NC2.

LogCFL = closure of context-free languages under logspace
reductions.
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Complexity of knapsack in hyperbolic groups

Myasnikov, Nikolaev, Ushakov 2013

Knapsack for every hyperbolic group belongs to P.
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Complexity of knapsack in hyperbolic groups

Myasnikov, Nikolaev, Ushakov 2013

Knapsack for every hyperbolic group belongs to P.

Theorem 1

Let G be a hyperbolic group. Knapsack for G is

in LogCFL and is

LogCFL-complete if G is nonelementary.
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Complexity of knapsack in hyperbolic groups

Myasnikov, Nikolaev, Ushakov 2013

Knapsack for every hyperbolic group belongs to P.

Theorem 1

Let G be a hyperbolic group. Knapsack for G is

in LogCFL and is

LogCFL-complete if G is nonelementary.

Theorem 2

For every infinite hyperbolic group, compressed knapsack is
NP-complete.
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Some proof ingredients

Myasnikov, Nikolaev, Ushakov 2013

Let G be hyperbolic, g ,g1, . . . ,gk , and N = ∣g ∣ + ∣g1∣ +⋯+ ∣gk ∣.
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Some proof ingredients

Myasnikov, Nikolaev, Ushakov 2013

Let G be hyperbolic, g ,g1, . . . ,gk , and N = ∣g ∣ + ∣g1∣ +⋯+ ∣gk ∣.

If there exist x1, . . . , xk ∈ N with g = gx1
1
⋯g

xk
k

then there exists
such x1, . . . , xk ≤ p(N) for a polyomial p only depending on G .
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Some proof ingredients

Myasnikov, Nikolaev, Ushakov 2013

Let G be hyperbolic, g ,g1, . . . ,gk , and N = ∣g ∣ + ∣g1∣ +⋯+ ∣gk ∣.

If there exist x1, . . . , xk ∈ N with g = gx1
1
⋯g

xk
k

then there exists
such x1, . . . , xk ≤ p(N) for a polyomial p only depending on G .

Grunschlag 1999 / Buntrock, Otto 1998

The word problem for a hyperbolic group is

1 growing context-sensitive and hence

2 can be recognized by a one-way logspace-bounded AuxPDA in
polynomial time.
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Some proof ingredients

Myasnikov, Nikolaev, Ushakov 2013

Let G be hyperbolic, g ,g1, . . . ,gk , and N = ∣g ∣ + ∣g1∣ +⋯+ ∣gk ∣.

If there exist x1, . . . , xk ∈ N with g = gx1
1
⋯g

xk
k

then there exists
such x1, . . . , xk ≤ p(N) for a polyomial p only depending on G .

Grunschlag 1999 / Buntrock, Otto 1998

The word problem for a hyperbolic group is

1 growing context-sensitive and hence

2 can be recognized by a one-way logspace-bounded AuxPDA in
polynomial time.

Holt, L, Schleimer 2018

The compressed word problem for a hyperbolic group belongs to P.
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Hyperbolic groups are knapsack-semilinear

(Semi-)linear sets

A subset A ⊆ Nk is linear if there exist v0, v1, . . . , vn ∈ N
k such that

A = {v0 + λ1v1 +⋯ + λnvn ∣ λ1, . . . , λn ∈ N}.

A semilinear set is a finite union of linear sets.
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Hyperbolic groups are knapsack-semilinear

(Semi-)linear sets

A subset A ⊆ Nk is linear if there exist v0, v1, . . . , vn ∈ N
k such that

A = {v0 + λ1v1 +⋯ + λnvn ∣ λ1, . . . , λn ∈ N}.

A semilinear set is a finite union of linear sets.

Knapsack-semilinear groups

A finitely generated group G is knapsack-semilinear if for all
g ,g1,g2, . . . ,gk ∈ G the following set is semilinear:

{(x1, x2, . . . , xk) ∈ N
k ∣ g = gx1

1
gx2
2
⋯g

xk
k
}
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Hyperbolic groups are knapsack-semilinear

(Semi-)linear sets

A subset A ⊆ Nk is linear if there exist v0, v1, . . . , vn ∈ N
k such that

A = {v0 + λ1v1 +⋯ + λnvn ∣ λ1, . . . , λn ∈ N}.

A semilinear set is a finite union of linear sets.

Knapsack-semilinear groups

A finitely generated group G is knapsack-semilinear if for all
g ,g1,g2, . . . ,gk ∈ G the following set is semilinear:

{(x1, x2, . . . , xk) ∈ N
k ∣ g = gx1

1
gx2
2
⋯g

xk
k
}

Theorem 3

Every hyperbolic group is knapsack-semilinear.
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Open problems

Knapsack in braid groups:

Is it decidable?
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Open problems

Knapsack in braid groups:

Is it decidable?

Knapsack in co-context-free groups.

It can be solved in exponential time.

Is there a better upper bound?
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Open problems

Knapsack in braid groups:

Is it decidable?

Knapsack in co-context-free groups.

It can be solved in exponential time.

Is there a better upper bound?

Knapsack for automaton groups:

There are automaton groups with undecidable knapsack
problem (powers of Heisenberg group).

For which automaton groups is knapsack decidable?
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