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The unstoppable rise of deep learning

• Neural networks timeline
1940s First proposed
1998 Convolutional nets
2006 Deep nets trained
2011 Rectifier units
2015 Vision breakthrough
2016 Win at Go

• Enabled by
− Big data 
− Flexible, easy to build 

models
− Availability of GPUs
− Efficient inference
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Much interest from tech companies,
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...healthcare,
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…and automotive industry

https://www.youtube.com/watch?v=mCmO_5ZxdvE
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...and more 

https://blogs.nvidia.com/blog/2017/01/04/bb8-ces/
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What you have seen

• PilotNet by NVIDIA (regression problem)
− end-to-end controller for self-driving cars
− neural network
− lane keeping and changing
− trained on data from human driven cars
− runs on DRIVE PX 2

• Traffic sign recognition (classification problem)
− conventional object recognition
− neural network solutions already planned…

• BUT
− neural networks don’t come with rigorous guarantees!

PilotNet https://arxiv.org/abs/1604.07316
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What your car sees…

Original             VGG16        VGG19         RESNET
Traffic light                          Misclassified

(ImageNet class 920)

State-of-the art deep neural networks on ImageNet
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Nexar traffic sign benchmark

Red light classified as green with (a) 68%, (b) 95%, (c) 78% 
confidence after one pixel change.

− TACAS 2018, https://arxiv.org/abs/1710.07859
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German traffic sign benchmark…

stop 30m 80m           30m go             go
speed speed         speed right        straight
limit limit           limit
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German traffic sign benchmark…

stop 30m 80m           30m go             go
speed speed         speed right        straight
limit limit           limit

Confidence    0.999964           0.99



12

Aren’t these artificial?
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News in the last months…

How can this happen if we have 99.9% accuracy?

https://www.youtube.com/watch?v=B2pDFjIvrIU
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Deep neural networks can be fooled!

• They are unstable wrt adversarial perturbations
− often imperceptible changes to the image [Szegedy et al 2014, 

Biggio et al 2013 …]
− sometimes artificial white noise
− practical attacks, potential security risk
− transferable between different architectures
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Risk and robustness

• Conventional learning theory
− empirical risk minimisation [Vapnik 1991]

• Substantial growth in techniques to evaluate robustness
− variety of robustness measures, different from risk 
− e.g. minimal expected distance to misclassification

• Methods based on optimisation or stochastic search
− gradient sign method [Szegedy et al 2014]
− optimisation, tool DeepFool [Moosavi-Desfooli et al 2016]
− constraint-based, approximate [Bastani et al 2016]
− adversarial training with cleverhans [Papernot et al 2016] 
− universal adversarial example [Moosavi-Desfooli et al 2017]
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This talk

• First steps towards methodology to ensure safety of 
classification decisions 
− visible and human-recognisable

perturbations: change of camera 
angle, snow, sign imperfections, ...

− should not result in class changes
− focus on individual decisions
− images, but can be adapted to other types of problems
− e.g. networks trained to produce justifications, in addition to 

classification (explainable AI)

• Towards an automated verification framework
− search+MCTS: CAV 2017, https://arxiv.org/abs/1610.06940
− global opt: IJCAI 2018, https://arxiv.org/abs/1805.02242
− SIFT+game: TACAS 2018, https://arxiv.org/abs/1710.07859
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Deep feed-forward neural network

Convolutional multi-layer network
http://cs231n.github.io/convolutional-networks/#conv
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Problem setting

• Assume 
− vector spaces DL0, DL1, …, DLn, one for each layer
− f : DL0 → {c1,…ck} classifier function modelling human

perception ability

• The network f’ : DL0 → {c1,…ck} approximates f from M 
training examples {(xi,ci)}i=1..M

− built from activation functions φ0, φ1, …, φn, one for each layer
− for point (image) x ∈ DL0, its activation in layer k is

αx,k = φk(φk-1(…φ1(x)))
− where φk(x) = σ(xWk+bk) and σ(x) = max(x,0) 
− Wk learnable weights, bk bias, σ ReLU

• Notation
− overload αx,n = αy,n to mean x and y have the same class
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Training vs testing
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Training vs testing
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Robustness

• Regularisation such as dropout improves smoothness

• Common smoothness assumption 
− each point x ∈ DL0 in the input layer has a region η around it 

such that all points in η classify the same as x

• Pointwise robustness [Szegedy et al 2014]
− f’ is not robust at point x if ∃y ∈ η such that f’(x) ≠ f’(y)

• Robustness (network property)
− smallest perturbation weighted by input distribution
− reduced to non-convex optimisation problem
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Verification for neural networks

• Little studied

• Reduction of safety to Boolean combination of linear 
arithmetic constraints [Pulina and Tachela 2010]
− encode entire network using constraints
− approximate the sigmoid using piecewise linear functions
− SMT solving, does not scale (6 neurons, 3 hidden)

• Reluplex [Barrett et al 2017]
− similar encoding but for ReLU, rather than sigmoid
− generalise Simplex, SMT solver
− more general properties
− successful for end-to-end controller networks with 300 nodes
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Safety of classification decisions

• Safety assurance process is complex
• Here focus on safety at a point as part of such a process

− consider region supporting decision at point x
− same as pointwise robustness… η

• But..
− what diameter for region η?
− which norm? L2, Lsup ?
− what is an acceptable/adversarial perturbation? 

• Introduce the concept of manipulation, a family of 
operations that perturb an image 
− think of scratches, weather conditions, camera angle, etc
− classification should be invariant wrt safe manipulations

x

y
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Safety verification

• Take as a specification set of manipulations and region η
− work with pointwise robustness as a safety criterion 
− focus on safety wrt a set of manipulations
− exhaustively search the region for misclassifications

• Challenges
− high dimensionality, nonlinearity, infinite region, huge scale

• Automated verification (= ruling out adversarial examples)
− need to ensure finiteness of search
− guarantee of decision safety if adversarial example not found

• Falsification (= searching for adversarial examples)
− good for attacks, no guarantees
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Training vs testing vs verification
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Verification framework

• Size of the network is prohibitive
− millions of neurons!

• The crux of our approach
− propagate verification layer by layer, i.e. need to assume for 

each activation αx,k in layer k there is a region η(αx,k)
− dimensionality reduction by focusing on features

• This differs from heuristic search for adversarial examples
− nonlinearity implies need for approximation using convex 

optimisation
− no guarantee of precise adversarial examples
− no guarantee of exhaustive search even if we iterate
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Multi-layer (feed-forward) neural network

ψkηk-1 ηk

φkx
αx,kαx,k-1 αx,n

layer 0                  layer k-1         layer k                   layer n
• Require mild conditions on region ηk and ψk mappings
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Mapping forward and backward

ψkηk-1 ηk

φkx
αx,kαx,k-1 αx,n

layer 0                  layer k-1         layer k                   layer n
• Map region ηk(αx,k) forward via ɸk, backward via inverse ψk
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Manipulations

• Consider a family Δk of operators δk : DLk → DLk that 
perturb activations in layer k, incl. input layer
− think of scratches, weather conditions, camera angle, etc
− classification should be invariant wrt such manipulations

• Intuitively, safety of network N at a point x wrt the region 
ηk(αx,k) and set of manipulations Δk means that perturbing 
activation αx,k by manipulations from Δk will not result in a 
class change  

• Note that manipulations can be 
− defined by user and wrt different norms
− made specific to each layer, and 
− applied directly on features, i.e. subsets of dimensions
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Ensuring region coverage

• Fix point x and region ηk(αx,k) 
• Want to perform exhaustive search of the region for 

adversarial manipulations
− if found, use to fine-tune the network and/or show to human 

tester
− else, declare region safe wrt the specified manipulations

• Methodology: reduce to counting of misclassifications
− discretise the region
− cover the region with ‘ladders’ that are complete and covering
− show 0-variation, i.e. explore nondeterministically and 

iteratively all paths in the tree of ladders, counting the 
number of misclassifications after applying manipulations

− search is exhaustive under assumption of minimality of 
manipulations, e.g. unit steps
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Covering region with ‘ladders’

• NB related work considers approximate, deterministic and 
non-iterative manipulations that are not covering

• Can search single or multiple paths (Monte Carlo tree search)
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Layer-by-layer analysis

• In deep neural networks linearity increases with deeper layers
• Naïve search intractable: work with features

• Propagate analysis, starting from a given layer k:
• Determine region ηk(αx,k) from region ηk-1(αx,k-1)

− map forward using activation function
− NB each activation at layer k arises from a subset of dimensions 

at layer k-1
− check forward/backward mapping conditions (SMT-expressible)

• Refine manipulations in Δk-1, yielding Δk
− consider more points as the analysis progresses into deeper 

layers
• If safety wrt ηk(αx,k) and Δk is verified, continue to layer k+1, 

else report adversarial example
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Layer-by-layer analysis

• Framework ensures that safety wrt ηk(αx,k) and Δk implies
safety wrt ηk-1(αx,k-1) and Δk-1

• If manipulations are minimal, then can deduce safety (= 
pointwise robustness) of the region at x

• But adversarial examples at layer k can be spurious, i.e. need 
to check if they are adversarial examples at the input layer

• NB employ various heuristics for scalability
− explore manipulations of a subset of most extreme dimensions, 

which encode more explicit knowledge
− employ additional precision parameter to avoid overly small 

spans
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Features

• The layer-by-layer analysis is finite, but regions ηk(αx,k) are 
high-dimensional
− exhaustive analysis impractical, need heuristics…

• We exploit decomposition into features, assuming their 
independence and low-dimensionality
− natural images form high-dimensional tangled manifold, 

which embeds tangled manifolds that represent features
− classifiers separate these manifolds

• By assuming independence of features, reduce problem of 
size O(2d1+..+dn) to set of smaller problems O(2d1),…O(2dn)
− e.g. compute regions and 0-variation wrt to features
− analysis discovers features automatically through hidden layer 

analysis
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Implementation

• Implement the techniques using SMT (Z3)
− for layer-by-layer analysis, use linear real arithmetic with 

existential and universal quantification
− within the layer (0-variation), use as above but without 

universal quantification
− work with Euclidean and Manhattan norms, can be adapted to 

other norms
• We work with one point/decision at a time, rather than 

activation functions, but computation is exact
− avoid approximating sigmoid (not scalable) [Pulina et al 2010]
− more scalable than approximating ReLU by LP [Bastani et al 

2016] or Reluplex [Barrett et al 2017]
• Main challenge: how to define meaningful regions and 

manipulations
− but adversarial examples can be found quickly
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Example: input layer

x

• Small point classification network, 8 manipulations
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Example: 1st hidden layer

• Refined manipulations, adversarial example found
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MNIST example

8                                                0

• 28x28 image size, one channel, medium size network (12 
layers, Conv, ReLU, FC and softmax)
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Another MNIST example

6                                                5

• 28x28 image size, one channel, medium size network (12 
layers, Conv, ReLU, FC and softmax)
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Compare to existing methods

• Search for adversarial perturbations only (=falsification)

• FGSM [Goodfellow et al 2014]
− calculates optimal attack for a linear approximation of 

network cost, for a set of images
− deterministic, iterative manipulations

• JSMA [Papernot et al 2015]
− finds subset of dimensions to manipulate (in the input layer)
− manipulates according to partial derivatives

• DLV (this talk)
− explores proportion of dimensions in input and hidden layers
− so manipulates over features discovered in hidden layers
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Falsification comparison

FGSM                                                                                       9

JSMA                                                                                        3

DLV                                                                                          3

• DLV able to find examples with smaller average distance than JSMA, 
at comparable performance (may affect transferability)

• FGSM fastest per image
• For high success rates (approx 98%) JSMA has smallest average 

distance, followed by DLV, followed by FGSM
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CIFAR-10 example

ship                           ship truck

• 32x32 image size, 3 channels, medium size network (Conv, 
ReLU, Pool, FC, dropout and softmax)

• Working with 1st hidden layer, project back to input layer
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ImageNet example

Street sign                                    Birdhouse

• 224x224 image size, 3 channels, 16 layers, state-of-the-
art network VGG, (Conv, ReLU, Pool, FC, zero padding, 
dropout and softmax)

• Work with 20,000 dimensions (of 3m), unsafe for 2nd layer
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ImageNet example

• 224x224 image size, 3 channels, 16 layers, state-of-the-
art network VGG, (Conv, ReLU, Pool, FC, zero padding, 
dropout and softmax)

• Reported safe for 20,000 dimensions
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Another ImageNet example

Boxer                      Rhodesian ridgeback

• 224x224 image size, 3 channels, 16 layers, state-of-the-
art network, (Conv, ReLU, Pool, FC, zero padding, dropout 
and softmax)

• Work with 20,000 dimensions
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Yet another ImageNet example

Labrador retriever                      Lifeboat

• 224x224 image size, 3 channels, 16 layers, state-of-the-
art network, (Conv, ReLU, Pool, FC, zero padding, dropout 
and softmax)

• Work with 20,000 dimensions
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Alternative approach: reachability analysis

• Instead of relying on exhaustive search of discretized region,
• can we compute the reachable region?

x ∈ η f(η)

• Under assumption of Lipschitz continuity
− reduce to computing upper and lower bounds via global 

optimisation
− yields provable guarantees: best and worst case confidence values

• Method NP-complete
− wrt the number of input dimensions, not number of neurons

• IJCAI 2018, https://arxiv.org/abs/1805.02242

ψk

φk
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Lipschitz networks

• Lipschitz continuity limits the rate of change of outputs as 
inputs change

• In fact, all layers of e.g. image classification networks are 
Lipschitz continuous:
− convolutional with ReLU activation functions
− fully connected with ReLU activation functions
− max pooling
− contrast normalisation
− softmax
− sigmoid
− hyperbolic tangent
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Lipschitz continuity reminder
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Reachability analysis: intuition
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Reachability analysis: generic definition
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Reachability analysis: problem types

• Generic formulation, parameterised by the statistics 
function o: [0,1]m → R

• Aim to compute lower and upper bounds [l, u]

• By instantiating the function o, we can obtain several 
known problems
− output range analysis
− safety verification: upper bound the difference between 

confidence for an input and largest confidence value for any 
other class by 0

− robustness comparison
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One-dimensional case
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Dynamic refinement of the constant
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Multi-dimension case
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Multi-dimension case ctd
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Case study: safety verification

• Randomly choose 20 images, 4 features manually
• Investigate DNNs of varying depth (shown shallowest and 

deepest)



58

MNIST example

• Take an image and select a feature within it

99.95%                             74.36% 99.98%
confidence                       lower bound                     upper bound

• Safety verification for the feature
− manipulating the feature can only reduce confidence to 74.36%



59

Robustness comparison

DNN-1
Unsafe

DNN-2
Unsafe

DNN-3
Unsafe

DNN-4
Safe

DNN-5
Unsafe

DNN-6
Safe

DNN-7
Unsafe

Re
ac
ha
bi
lit
y

di
am

et
er

• Can obtain robustness evaluation by computing expected 
confidence diameter weighted by the test data distribution 
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Safety comparison

• No DNN is 100% safe
• Choice of layers matters, not just depth: DNN6 is safest
• Feature matters: some features (e.g. 1 and 2) are more 

easily perturbed



61

Comparison with other tools

• Sherlock and Reluplex affected by number of neurons and 
layers

• On the case study, improvement of 36x over Sherlock and 
100x over Reluplex
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Searching for adversarial examples…

• Input space for most neural networks is high dimensional 
and non-linear

• Where do we start?
• How can we apply structure to the problem?

• TACAS 2018, https://arxiv.org/abs/1710.07859

• Image of a tree has 
4,000 x 2,000 x 3 
dimensions = 
24,000,000 
dimensions

• We would like to find a 
very ‘small’ change to 
these dimensions
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Adversarial setting

Black Box
• Access only to the inputs 

and outputs of the 
network. 

• NO access to any other 
network parameters (i.e. 
topology/weights)

• Able to query the network 
for new outputs

White Box
• All Black Box privileges 
• Access to training data and 

test data
• Access to topology
• Access to weights 
• Access to activation 

functions
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Manipulations

• We represent a single input as α
• The classification w.r.t some input is denoted N(α) = c
• An adversarial example α’ is a manipulated α, for which N(α) ≠ 

N(α’)
• Since there is no perfect measure of similarity for the image 

domain, we stick to using the conventional Lk metric 
• We want to find an adversarial example that minimizes distance
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Search region

• Given a specific k, an input, and a maximum distance ∂, 
define a search region as: 
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Safety within a region

• We can verify that a network is safe w.r.t an input if no 
adversarial example exists within a region:

• We now refine the notion of adversarial examples to only 
images within this set, denoted: 
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Safety within a region

• We can verify that a network is safe w.r.t an input if no 
adversarial example exists within a region:

• We now refine the notion of adversarial examples to only 
images within this set, denoted: 

We have not established  
a good handle on 
‘where’ to move in this 
space!
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Feature-based exploration

• Searching by trying every combination of pixel values is 
intractable 

• We can ‘reduce’ the dimensionality of an images by 
reducing it only to its salient features

- Set of features given an 
image

- Response strength of the 
feature    (roughly how 
‘important’ it is)

- X coordinate of a keypoint

- Y coordinate of a keypoint

- Radius of a keypoint
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Feature extraction algorithms (SIFT)

• (1) Scale space extrema detection

• (2) Keypoint localization and description

We blur the image 
in order to detect 
extrema of 
different sizes 

Localization looks 
at the gradients 
from the scale 
space to describe 
each keypoint

SIFT is invariant to scale, rotation and translation
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Intuition for feature-based exploration

• Known fact: neural 
networks are executing 
feature extraction under the 
hood…

• (3blue1brown animation by 
Grant Sanderson)
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Feature-based representation

• The SIFT algorithm, while reliably able to extract keypoints, 
is not able to guarantee coverage of every pixel in the 
image

• We use a Gaussian mixture model in order to assign each 
pixel a probability based on its perceived saliency
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Solution: two-player game

• Goal is finding adv. example, reward inverse of distance
• Player 1 selects the feature that we will manipulate from 

• Each keypoint represents a possible move for player 1
• Player 2 then selects the pixels that will be manipulated
• Use Monte Carlo tree search to explore the game tree, 

while querying the network to align features
• Method black box, and can converge to the optimal 

strategy (optimal adversarial example)
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Players moves and strategy

• Player 1 selects the feature that we will manipulate from 

• Initial strategy: weight by importance (response strength)

• Player 2 manipulates pixels by some bounded value
• Initial strategy: select from the GMM
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Monte Carlo Tree Search

• To efficiently explore the feature space (play the game) of 
an image we employ the Monte Carlo Tree Search algorithm

• Each game play can be represented as a path down the tree
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MCTS: selection/expansion

• The root of our tree represents the original image, and 
each child represents a potential manipulated image

• First step is to select a manipulation based on each players 
strategy

• If the child has never been selected from previously then 
we “expand” the tree to select a new leaf.
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MCTS: simulation

• After a new child has been added to the tree, we 
approximate the reward of visiting this child by 
continuously searching the tree until we have either timed 
out or hit an adversarial example

• These nodes are not recorded as a part of the partial tree
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MCTS: backpropagation

• After we have terminated the tree, we calculate the reward, 
and backpropagate that reward up the tree to update our 
exploration policy (update each player’s strategies)
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Tree expands until example is found
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MCTS/Game convergence

• The game converges when each player’s strategy at any point is a Dirac 
distribution

• If both players choose the next node based on a Dirac distribution, then 
the game converges to a deterministic and memoryless strategy

• In practice, this convergence is quick! (a matter of seconds)
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Lipschitz networks

• Recall Lipschitz continuity limits the rate of change of 
output

• For Lipschitz networks, there exists a diameter such that 
every image within it shares the classification of a given 
input

• Use this fact to provide safety guarantees
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Safety guarantee via MCTS

• Cover the region with a ‘grid’ of diameter    (half of 
manipulation size)

• If the MCTS fails to find a n adversarial example then we 
can deduce that one does not exist
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Results of safety testing (MNIST)

• Our black box algorithm can often converge to an optimal 
strategy, 

• and does so in a very short amount of time (less than a 
second for these small images) 



83

Comparison with known algorithms

• On several standard benchmarks, achieves competitive 
performance with white box optimization and heuristic 
search,

• Also allows for guarantees not provided by competing 
algorithms 
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Scaling up to large networks (ImageNet)

• Scaling up to some of the larger images from ImageNet 
(300 x 300 x 3), we see that our method continues to scale

• For an image that is roughly 350 times larger than MNIST 
images, we are still able to find adversarial examples, often 
in less than one minute
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Recent improvement: lower bounds

• Convergence of lower and upper bounds on maximum safe
radius

• See arXiv:1807.0357



86

Evaluating safety-critical scenarios: Nexar

• Dashboard camera images from the Nexar dataset were 
taken in order to test a safety critical situation 

• Tens of thousands of images were taken from real dash 
cams in all weather and lighting conditions

• Challenge winning network achieves 95% accuracy over 
unseen test data 
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Evaluating safety-critical scenarios: Nexar

• Using our Game-
based Monte Carlo 
Tree Search method 
we were able to 
reduce the accuracy 
of the network to 0%

• On average, each 
input took less than a 
second to manipulate 
(.304 seconds)

• On average each 
image was vulnerable 
to 3 pixel changes
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Challenges for verification of NNs

• Fascinating application domain, huge challenges!
• Many aspects of neural networks make them very difficult 

for us to apply typical verification techniques
− no source code (only weights)
− variety of topologies and activation functions
− high dimensionality of input space
− size of sample space
− lack of interpretability

• The goals of this work are to provide
− scalable and efficient 
− with provable guarantees
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Conclusion

• Deep learning should be more critically evaluated when put 
into practice in safety- and security-critical situations

• Adversarial examples help in understanding the robustness 
of DNN decision boundaries

• Proposed first framework for safety verification of deep 
neural network classifiers
− search-based (SMT) and Monte Carlo tree search
− feature-guided exploration for fast, black-box testing, in a 

stochastic game framework
− provable guarantees for Lipschitz continuous networks

• Future work
− how best to use adversarial examples: training vs logic
− more complex properties?

• Recent work: check out arxiv
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AI safety – challenge for verification?

• Complex scenarios
- goals
- perception
- situation awareness
- context (social, 

regulatory)

• Safety-critical, so 
guarantees needed

• Should failure occur, 
accountability needs
to be established
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Reasoning about cognitive trust

• Formulate a theory for expressing and reasoning about 
social trust in human-robot collaboration/competition

• Develop tools for trust evaluation to aid design and 
analysis of human-robot systems

Over-trust and inattention are known 
problems that technology developers 
need to design for, and simply telling 
customers not to do what comes naturally 
is probably not enough.

Patrick Lin
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Quantitative verification for trust? 

• Logic PRTL* undecidable in general

• Have identified decidable fragments (EXPTIME, PSPACE, 
PTIME), by restricting the expressiveness of the logic and 
the stochastic multiagent systems

• Reasoning about trust can be used
- in decision-making for robots
- to justify and explain trust-based decisions, also for humans
- to infer accountability for failures

- Next step is to develop model checking for trust…

- But many challenges remain!
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Morality, ethics and social norms

• Already merging into 
traffic proving difficult, 
what about social
subtleties?

• What to do in emergency? 
− moral decisions
− enforcement
− conflict resolution
− handover in 

semi-autonomous 
driving

• Obey traffic rules
− cultural dependency

http://www.pbs.org/wgbh/nova/next/tech/robot-morals/
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Summit on…

•Machine Learning Meets Formal 
Methods!

• Date: 13 July 2018
• Venue: University of Oxford
• Talks and panel discussion by academics and industrialists

• https://www.turing.ac.uk/events/summit-machine-learning-
meet-formal-methods/

• http://www.floc2018.org/
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Summit on ML Meets FM
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FLoC - Inspiring lecturers

Keynote
Shafi Goldwasser (MIT and Weizmann)
Georges Gonthier (INRIA Saclay)

Plenary
Byron Cook (Amazon and UCL)
Peter O’Hearn (Facebook and UCL)

Public lecture 10 July
Stuart Russell (UC Berkeley)
Logic and Probability
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FLoC –Debate

Oxford Union-style debate on Ethics for Robotics
Luciano Floridi (Oxford/ATI)
Francesca Rossi (Padova) 
Ben Kuipers (Michigan) 
Jeannette Wing (Columbia) 
Matthias Scheutz (Tufts)
Sandra Wachter (Oxford/ATI)

Moderated by Judy Wajcman (LSE)


