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Our question

Computational hardness of solving an Initial Value Problem
(also called Cauchy’s problem) of the form:

y′ = f(t, y)

y(t0) = y0

Well, this require to discuss deeper questions than expected.

I What means “solving”?

• Answer: solving with a computer

I but what means computer?
I how complexity is measured?
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What is a computer ?

Laptop Supercomputer

Servers

The highest-selling
single computer model

of all time

source: Guinness World Records
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What is a computer ?

Laptop Supercomputer

Servers
Commodore 64
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What is a computer ?

ENIAC Kelvin’s Tide Predicter

Admiralty Fire Control
Table

Differential Analyzer
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What is a computer ?

Difference Engine

Linear Planimeter

Slide Rule

Antikythera mechanism
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A first classification

space

time

discrete

continuous
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A first classification

Not general purpose

space

time
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continuous
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Digital Circuits
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A first classification
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A first classification

Mathematical model

space

time

discrete

continuous

laptop server

supercomputer

Digital Circuits

ENIAC Commodore

Discrete
Dynamical System

y(t + 1) = f(y(t))

Differential Analyzer
Analog Circuits

Continuous
Dynamical System

y′ = f(y)
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A first classification

Computability model

space

time

discrete

continuous

laptop server

supercomputer

Digital Circuits

ENIAC Commodore

Turing machine

Differential Analyzer
Analog Circuits

GPAC y′ = p(y)
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Our actual motivation

Understand how analog models compare to classical digital
models of computation.

I At computability level
I At complexity level.

Continuous time analog models correspond to various classes
of ordinary differential equations.

Discussing hardness of solving IVP according to various
classes of dynamics is basically discussing the computational
power of various classes of analog models.
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Sub-menu

What is a computer?
The GPAC
Programming with the GPAC
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Shannon’s General Purpose Analog Computer
The GPAC is a mathematical abstraction from Claude
Shannon (1941) of the Differential Analyzers.

[Graça Costa 03]: This corresponds to polynomial Ordinary
Differential Equations (pODEs), i.e.

y′ = p(t, y)

y(t0) = y0

where
I p is a (vector of) polynomials.
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A machine from 20th Century: Differential analyzers

Vannevar Bush’s 1938 mechanical

Differential Analyser

Underlying principles: Lord
Kelvin 1876.

First ever built: V. Bush
1931 at MIT.

Applications: from gunfire
control up to aircraft design

Intensively used during U.S.
war effort.

Electronic versions from late
40s, used until 70s
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A machine from 21th Century: Analog Paradigm Model-1

http://analogparadigm.com

Fully modular

Basic version.
I 4 integrators, 8 constants, 8 adders, 8 multipliers.
I 14 kgs.
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The General Purpose Analog Computer
Shannon’s 41 presentation:

Basic units:

k e0e1

constant: e0 = ke1

+Π e0
e1
e2

product: e0 = e1e2

e0
e1
e2

summer: e0 = −(e1 + e2)

e0

e(0)

e1

integrator:
e0 = −

∫ t
0 (e1(u)du + e(0))

(Feedback connections are allowed).

A function is GPAC-generated if it corresponds to the output
of some unit of a GPAC.
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Cosinus and sinus: x = cos(t), y = sin(t)

−1

cos(t) −sin(t)

x y


x ′(t)= −y(t)
y ′(t)= x(t)
x(0)= 1
y(0)= 0

⇒
{

x(t)= cos(t)
y(t)= sin(t)
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Sub-menu

What is a computer?
The GPAC
Programming with the GPAC

16



Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y 2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y 2

3 + 1)
y ′6 = y6y 2

3



y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2

,y4 = cos y2 ,y5 = ee
y1 +t ,y6 = ey1
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Closure Properties

The class of generated functions include all (analytic)
common functions.

It is stable by many operations:

I if f and g can be generated, then f + g , f − g , fg , 1
f , f ◦ g

can be generated.

It is stable by ODE solving:

I if f can be generated, and y satisfies y ′ = f (y) then y can be
generated.

A generated function must be analytic.

I Famous analytic non-generable functions: [Shannon 41]
• Euler’s Gamma function Γ(x) =

∫∞
0

tx−1e−tdt [Hölder 1887]
• Riemann’s Zeta function ζ(x) =

∑∞
k=0

1
kx

[Hilbert].

The set of pODE computable constants (of the form f (1)) is
a field.
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Our question

Computational hardness of solving an Initial Value Problem
(also called Cauchy’s problem) of the form:

y′ = f(t, y)

y(t0) = y0

Various classes of functions f :

f is continuous
⇐ f is (locally) Lipchitz1

⇐ f is Ck , k ≥ 1.
⇐ f is analytic2

⇐ f is polynomial

1||f(y)− f(y′)|| ≤ L||y − y′|| for some L.
2f is equal to its Taylor’s expansion in every point.
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Maths: Back to school

{
y′ = f(y(t))
y(0) = x

(1)

Famous theorems:

Peano-Ascoli if f is continuous then existence of solutions

Cauchy - Lipschitz if f is Lipchitz3 + unicity of solutions
Picard - Lindelöf

f is Ck , k ≥ 1.

Cauchy-Kowalevski if f is analytic4 + solutions are analytic

f is polynomial

Other facts:

I No restriction in considering ODEs in this form y′ = f(y(t)).

3||f(y)− f(y′)|| ≤ L||y − y′|| for some L.
4f is equal to its Taylor’s expansion in every point.

21



Important preliminary

Discussing the hardness of the problem

I over t ∈ [0, 1] (or any compact domain)
is really different from

I over t ∈ R.
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Classical numerical methods

Euler’s method:

yi+1 = yi + f (ti , yi )h (2)

ti+1 = ti + h (3)

Runge Kutta’s 4th oder method:

yi+1 = yi + 1/6(k1 + 2k2 + 2k3 + k4) (4)

k1 = hf (ti , yi ) (5)

k2 = hf (ti + h/2, yi + k1/2) (6)

k3 = hf (ti + h/2, yi + k2/2) (7)

k4 = hf (ti + h, yi + k3) (8)

<your prefered method >

. . .

Work well and are efficient over a compact domain t ∈ [0, 1],
assuming f Lipschitz

I But are NOT polynomial in t when t ∈ R.
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The Starting Point of Recursive Analysis5

The “computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by a finite
means.

Cited from A. M. Turing, “On computable numbers, with an application

to the Entscheidungsproblem”. Proc. London Math. Soc. 42 (1936)

230-265.
5This part is mostly borrowed from Vasko Brattka’s Tutorial, CIE 2005
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Computable Functions: informal presentation for
f : R2 → R

A tape represents a real number

Each real number x is represented via
an infinite sequence (xn)n ∈ Q,

||xn − x || ≤ 2−n.

M behaves like a Turing Machine

Read-only one-way input tapes
Write-only one-way output tape.
M outputs a representation of f (x1, x2)
from representations of x1, x2.
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Computable analysis point of view:
impossible in the general case.

Theorem (Pour-El Richards 79)

There exists some computable f : [0, 1]× [−1, 1]→ R such that
ordinary differential equation y ′ = f (t, y), has no computable
solution over any closed domain.

However:

I Imposing unicity and existence of solutions leads to
computability [Ruohonen 96].

I If f is continuous and y is the unique solution of x ′ = f (t, x),
x(t0) = x0, then the operator which maps (f , t0, x0) to y is
computable [Graça Collins 09]
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Non unicity: a classical counter-example
Solutions over R of f continuous such that:{

y ′ = f (t, y)
y(0) = 0

with

{
f (t, y) = 2y

t for t 6= 0
f (0, y) = 0

:

all functions yC1,C2 with C1,C2 ∈ R, where

yC1,C2(t) =

{
C1t2 if t < 0
C2t2 if t ≥ 0
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Proof IDEA of uncomputability result:
Dispersers/Collectors

A Disperser: consider K (x , y) given by

A Collector:

32



Proof idea of uncomputability result:
How the considered function looks like?

A sequence of “boxes” that become progressively smaller as m increases, and the vertexes converge to the

origin.
I Each box is made of a “collector” and of a “disperser”.
I This provides computability of the function.

A small “pulse” is placed at the vertex of some of the box:
I For the mth box, this pulse is positive, negative, or zero, depending on whether m ∈ A, m ∈ B, or

m 6∈ A ∪ B
I where (A, B) is a fixed recursively inseparable pair of sets.

By reading x = xm at the aperture of disperser m within an error less than half the size of the aperture,
one knows whether x ∈ A or x ∈ B.
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Proof idea of computability:
Why unicity suffices to get computability

Exhaustive algorithm:

I Generate all possible
(partial) coverings of the
state space

I Coverings of arbitrary
small diameters exist.

I By a reasoning (similar to
Peano-Ascoli’s theorem),
they must contain at least
a solution.

I So just keep testing
coverings until you find an
appropriate one

Named the “ten thousand monkeys approach” by its
authors . . . 34
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Computational complexity over a compact domain

Summary:

Assumptions on f Upper bound Lower bound

ODE with unique solution Computable Arbitrary high complexity
Lipschitz ODE f PSPACE PSPACE
f is of class C1 PSPACE PSPACE
f is of class Ck , k > 1 PSPACE CH
f is analytic P P

Results due to [Miller 1970], [Ko 1983], [Müller, 1987]
[Kawamura, 2010] and [Kawamura et al., 2014]
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Over non-compact domains?

The previous results are only valid in compact sets.

Actually, this is provably impossible to do it in polynomial
time over non-compact sets: consider

I eee
...e

t

is solution of



y ′1 = y1

y ′2 = y1y2

y ′3 = y2y3

...
...

...
y ′n = yn−1yn

I This cannot be computed in a time polynomial over R,

• since just writing this value in binary cannot be done in
polynomial time.
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Parameterized complexity

This is then natural to use parameterized complexity

I i.e. complexity is measured against one or more extra
parameters.

Example:

Proposition

If (α, β) is the maximal interval of existence of the solution y of an
ODE y ′ = f (t, y) and β < +∞ then y(t) is unbounded as t → β

Some natural examples:

I Growth of functions or of their derivatives.

I Length of the solution curve y between y(0) := y(0; 0, y(0))
and y(t) := y(t; 0, y(0)).
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Parameterized complexity for analytic functions
Fact: Assume f is is analytic on some compact K ⊂ dom f .
Then

|Dβf(x)| ≤ C
|β|+1
K β! (9)

for some CK for all β ∈ Nd and x ∈ K .

Theorem (Kawamura Thies Ziegler 2018)

Assume:

1. The right-hand side f : D ⊂ Rd → Rd is analytic and
computable

2. The solution y(t) := y(t; 0, y0) exists for all t ∈ [0, 1]

3. Restricted to K := y([0, 1]; 0, y0) the integer C is a derivative
bound for f (i.e. (9) holds).

4. The algorithm computing f gives a 2−n approximation of f(x)
in time poly(n + C ) on any x ∈ K.

Then y(t) can be computed in polynomial time from y0,
t ∈ [0, 1] and C (y0).
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Idea of the proof

1. Idea 1: Computing a local solution: A simple truncation of
power series based approach suffices to compute a local
solution on some small time interval [t0, t0 + δ] in time
polynomial in n + C (y0).

I See complexity analysis from [Moiske Müller 93] of
computing an analytic function from the coefficients of its
power series.

I Key remark for the slide to come: δ = 1
2(d+1)C 2 is ok.

2. Idea 2: Extending to a global solution: To get a solution on
a bigger interval this algorithm is iterated several times.

I it suffices to show that polynomially in C (y0) many iterations
suffice and that it suffices to compute the intermediate values
in each iteration with polynomial precision.
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Idea 2: Extending to a global solution

Algorithm
SOLVE − IVP(f, y0, t, n,C )

tcurr ← 0

y← APPROX (y0,m)

h← 1
2(d+1)C2

while tcurr + h ≤ t do
I y←

LOCALSOLUTION(y, h,m,C )
I tcurr ← tcurr + h

return
LOCALSOLUTION(f, y, t −
tcurr ,m,C )

Analysis:

N = 2(d + 1)C 2 steps.

Error of type 1: precision
2−m

Error of type 2: instead of
solving with initial value yi
we start from an
approximation zi :
I From Gronwall’s Lemma, if
‖y0 − z0‖ ≤ ε then
‖y(t; y0)− y(t, z0)‖ ≤ 2ε for

t < 1
2(d+1)C2 .

The total error E satisfies
E ≤ 2N+1−m.
I by induction EN ≤ 2N+1−m − 2−m

since E0 ≤ 2−m , and

Ek+1 ≤ 2Ek + 2−m

It suffices to choose
m ≥ n + 2(d + 1)C 2 + 1 to
prove the theorem.

42



Idea 2: Extending to a global solution

Algorithm
SOLVE − IVP(f, y0, t, n,C )

tcurr ← 0

y← APPROX (y0,m)

h← 1
2(d+1)C2

while tcurr + h ≤ t do
I y←

LOCALSOLUTION(y, h,m,C )
I tcurr ← tcurr + h

return
LOCALSOLUTION(f, y, t −
tcurr ,m,C )

Analysis:

N = 2(d + 1)C 2 steps.

Error of type 1: precision
2−m

Error of type 2: instead of
solving with initial value yi
we start from an
approximation zi :
I From Gronwall’s Lemma, if
‖y0 − z0‖ ≤ ε then
‖y(t; y0)− y(t, z0)‖ ≤ 2ε for

t < 1
2(d+1)C2 .

The total error E satisfies
E ≤ 2N+1−m.
I by induction EN ≤ 2N+1−m − 2−m

since E0 ≤ 2−m , and

Ek+1 ≤ 2Ek + 2−m

It suffices to choose
m ≥ n + 2(d + 1)C 2 + 1 to
prove the theorem.

42



Parameterized complexity for f polynomial

Consider

y′ = p(t, y)

y(0) = y0

where p is (some vector of) polynomials.

Theorem (Bournez Graça Pouly 2012)

Then y(t) can be computed in poly(t + log ‖y0‖+ `) time from
t ∈ R, y0, p, ‖y0‖ and `.
where

` =

∫ t

t0

max(1, ‖y(u)‖∞)deg(p)du ≈ length of y over [t0, t]

.
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And conversely . . .

Turing machines can be simulated by Ordinary Differential
Equations of type:

y′ = p(t, y)

y(t0) = y0

What about complexity?
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Time complexity for continuous systems

Variable t is rather arbitrary.

y(0) = g(x) y ′ = h(y)

t

f(x)

g(x)

y1(T )

T=1

z(t)=y(et)

;

z(0) = g̃(x) z ′ = h̃(z)

t

f(x)

g̃(x)

z1(t)

T=1

y1(T )

w(t)=y
(
ee

t
)

;

w(0) = ĝ(x) w ′ = ĥ(w)

t

f(x)

ĝ(x)

w1(t)

T=1

y1(T )
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A Simple & Key Idea: curvilinear abscissa

t

f(x)

q(x)

y1(t)

{
y(0)= q(x)
y ′(t)= p(y(t))

Length based: T

`(t) = length of y over [0, t]

=

∫ t

0
‖p(y(u))‖∞ du

Consider parameterization

t = length of y over [0, t]

I.e.:
Follow curve at constant speed.
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Main Statement: Complexity

Theorem6 Any polynomial time computable function can be
computed in polynomial length, and conversely.

The notion of polynomial time computable function can
be defined using pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define polynomial time computable functions.

6OB, D. Graça, A. Pouly ICALP Track B Best Paper Award [?], Journal of
the ACM [?]
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Formal Theorem
Let a, b ∈ Q.

f ∈ C 0([a, b],R) is polynomial-time computable

iff

∃ polynomials p, q,Ω s.t. ∀x ∈ dom f ,
there exists a (unique) y satisfying for all t ∈ R+:
I y(0) = q(x , µ) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1

I y satisfies a pODE

I if leny (0, t) > Ω(‖x‖∞ , µ) then ‖y1..m(t)− f (x)‖∞ 6 e−µ

I y1..m is e−µ-close to f (x) after a polynomial length

Picture:

leny (0, t)T=Ω(x ,µ)

f (x)=y3(T )

y(0)=q(x ,µ)

49



Formal Theorem
Let a, b ∈ Q.

f ∈ C 0([a, b],R) is polynomial-time computable

iff

∃ polynomials p, q,Ω s.t. ∀x ∈ dom f ,
there exists a (unique) y satisfying for all t ∈ R+:
I y(0) = q(x , µ) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1

I y satisfies a pODE

I if leny (0, t) > Ω(‖x‖∞ , µ) then ‖y1..m(t)− f (x)‖∞ 6 e−µ

I y1..m is e−µ-close to f (x) after a polynomial length

Picture:

leny (0, t)T=Ω(x ,µ)

f (x)=y3(T )

y(0)=q(x ,µ)

49



For Discrete People
Fix a “reasonable” way to encode words w , length of input, and
decision:

For example ψ(w) =
(∑|w |

i=1 wik
−i , |w |

)
, and > 1, 6 −1.

Then:

L ⊆ {0, 1}∗ is polynomial-time computable
iff

∃ polynomials p, q,Ω s.t. ∀w ,
there exists a (unique) y satisfying for all t ∈ R+:
I y(0) = q(ψ(w)) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1

I y satisfies a pODE

I if leny (0, t) > Ω(|w |) then |y1(t)| > 1

I decision is made after a polynomial length

I w ∈ L iff y1(t) > 1

I and corresponds to L
Picture:

leny (0, t)T=Ω(|w |)

>1 or 6−1

y(0)=q(ψ(w)))
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Conclusion/Take Home Message

Programming with/Solving ODEs is simple and fun.

Solving ODEs over t ∈ R is not polynomial.

Needs for some parameterized algorithms.

I polynomial in C (y)
I polynomial in length

Analog’s world: Many concepts from computer science can
be defined using polynomial ODEs

I Computable functions.

I Polynomial Time Computable Functions

I NP, PSPACE , . . . ?

I Revisiting computation theory with pODEs . . .
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