News on Safety Properties for Timed Petri Nets

Patrick Totzke

Edinburgh

2018-09-24

1/15



Universal Safety for Timed Petri Nets is
PSPACE-complete

Parosh Aziz Abdulla
Uppsala University, Sweden
Mohamed Faouzi Atig

Uppsala University, Sweden

Radu Ciobanu

University of Edinburgh, UK

Richard Mayr

University of Edinburgh, UK

Patrick Totzke
University of Edinburgh, UK
Litps: //oreid.org /0000-0001-

—— Abstract
A timed network consists of an arbitrary number of initially identica) 1-
interacting via hand-shake commuication. In this setting there is no unique central controller,
gince all automata are initially identical. We consider the universal safety problem for such
controller-less timed networks, Le., ve ifying that a bad event (enabling some given transition) is
fupossible regardless of the size of the networ X

This upiversal safety problem is dual to the existential coverability problem for timed-are
Petri nets, ie., does there exist a numbex m of tokens, such that starting with m tokens in a
given place, and noue in the other places, some given {ransition is eventually enabled.

We show that these problems are PSPACE-comph
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global time ticks 21, and discrete steps N

Reachability, Coverability, Boundedness (...) undecidable

_ Coverability: M —5—54?
- decidable via WSTS if d =1
- inter-reducible to Coverability for ordered data nets

Existential Coverability: dn € N with M - n BRI
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Obs. 1

- region equality is a time-abstract bisimulation
- unlike for TA, it has infinite index

Obs. 2

- steps between regions are monotone wrt. region embedding
- embedding is a well-quasi-order

Together, this yields decidability via the WSTS approach
(and completeness for F . ).

NB: this fails for d > 2, for several reasons... Indeed we have
undecidability in general.
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Question: Does there exist 3n € N with M - n et

~ parametrized safety checking Networks of Timed Automata

L

~ Coverability for TPN with continuous firing semantics a la
Haddad et al.'17.

(logspace) reduces to Coverability

We show PSPACE-completeness

LB: iterated monotone circuits
UB: Regions + forward acceleration
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Existential Coverability

Q: What's different compared to Coverability?
A: Token multiplicities do not matter. So,

1. A Region a sequence of matiisetsover L = P x {0,..., Cmax}

This already improves the upper bound to F,

2. Wilog., the net is non-consuming: *t C t® for all transitions t.
This means that discrete transition firing is non-decreasing
and for every region R

. : . . . di
- there is a unique maximal region R’ with R ———=*R’

- R’ is (Ptime) computable

8/15
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When forward exploring zeno behaviour regions “stabilize”
and the limit is expressible as regular expression. ) disc
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Existential Coverability: Construction

- use regular expressions over 2 to represent (limit) regions

- careful forward exploration, using intermediate compression
steps that add Kleene *s
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Existential Coverability: Construction

- use regular expressions over 2% to represent (limit) regions

- careful forward exploration, using intermediate compression
steps that add Kleene *s

Properties

- Computes the set of coverable regions
- does not need nondeterministic branching

- every explored RE has length <5 .

Corollary

- the sequence is singly exponential
- checking Existential Coverability is in PSPACE.
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WIP 1: multi-dimensional ECOVER

Conjecture
ECOVER is PSPACE-completeness for any fixed dimension d.

- Regions become directed (hyper) graphs with edges labelled
by subsets of P x [0. .. cmax + 1]¢

- Semantics of Kleene stars?
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WIP 2: Coverability for TBPP

BPP nets: every transition consumes at most one token

- ~ context-free controlled TPN

- Coverability

- in PSPACE for all d
(lossy semantics ~ witnesses visit only small regions)
- conjecture: NP-complete for d =1

- Reachability:
- 1st step: bound "time to kill" a region?
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thank you.
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