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Networks of Timed Automata

- a (finite-state) control program (S)

- K indistinguishable d-clock Timed Automata (C)

- global time ticks + handshake communication.

Q: Suppose all K clients are identically initialized.
Can one of the clients reach a failure state?
A: Simple! It’s a big (K ∗ d)-clock TA! [AD94]

Q: What if the number K of clients is a parameter?
Does there exist K such that S × CK can fail?
A: Not so simple:

- decidable for d = 1 [AJ03];
- undecidable for d ≥ 2 [ADM04].

Q: What if there is no controller? Exists K so that CK can fail?
A: PSPACE-complete [for d = 1, This paper]
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Timed Petri Nets

0 ≤ x ≤ 5
1 < y ≤ 2
0 ≤ z ≤ 0
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- Configurations are finite multisets over P × Rd

- global time ticks

0.1−−→ and discrete steps
t−−→

- Reachability, Coverability, Boundedness (. . . ) undecidable

- Coverability: M
∗−−→ t−−→?

- decidable via WSTS if d = 1
- inter-reducible to Coverability for ordered data nets

- Existential Coverability: ∃n ∈ N with M · n ∗−−→ t−−→?
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Coverability via Regions
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The Region of this configuration is a sequence

s,0 q,5

r,1

r,1 r,1
p,5

.0 .1 .2 .3

of multisets over P × {0, . . . , cmax}, one for each fractional value*
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Coverability via Regions

Obs. 1

- region equality is a time-abstract bisimulation

- unlike for TA, it has infinite index

Obs. 2

- steps between regions are monotone wrt. region embedding

- embedding is a well-quasi-order

Together, this yields decidability via the WSTS approach
(and completeness for Fωω ).

NB: this fails for d ≥ 2, for several reasons... Indeed we have
undecidability in general.
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Existential Coverability

In: A TPN, a marking M, a transition t

Question: Does there exist ∃n ∈ N with M · n ∗−−→ t−−→?

≈ parametrized safety checking Networks of Timed Automata

≈ Coverability for TPN with continuous firing semantics á la
Haddad et al.’17.

− (logspace) reduces to Coverability

− We show PSPACE-completeness

LB: iterated monotone circuits
UB: Regions + forward acceleration
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Existential Coverability

Q: What’s different compared to Coverability?

A: Token multiplicities do not matter. So,

1. A Region a sequence of multisets over Σ
def
= P ×{0, . . . , cmax}

sets S ⊆ Σ
This already improves the upper bound to Fω

2. Wlog., the net is non-consuming: •t ⊆ t• for all transitions t.
This means that discrete transition firing is non-decreasing
and for every region R

- there is a unique maximal region R ′ with R
disc−−→∗R ′

- R ′ is (Ptime) computable
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Existential Coverability: Key Observation

When forward exploring zeno behaviour regions “stabilize”

and the limit is expressible as regular expression.

In this example as ZY ∗A.

A

A
disc

A∅
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disc

AB∅
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ε

ABCD
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ABCD∅
ε
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ABCDEYZ
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Existential Coverability: Construction

- use regular expressions over 2Σ to represent (limit) regions

- careful forward exploration, using intermediate compression
steps that add Kleene *s

Properties

- Computes the set of coverable regions

- does not need nondeterministic branching

- every explored RE has length ≤ 5 .

Corollary

- the sequence is singly exponential

- checking Existential Coverability is in PSPACE.

10 / 15



Forward Exploration
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Existential Coverability: Construction

- use regular expressions over 2Σ to represent (limit) regions

- careful forward exploration, using intermediate compression
steps that add Kleene *s

Properties

- Computes the set of coverable regions

- does not need nondeterministic branching

- every explored RE has length ≤ 5 .

Corollary

- the sequence is singly exponential

- checking Existential Coverability is in PSPACE.
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WIP 1: multi-dimensional ECOVER

Conjecture

ECOVER is PSPACE-completeness for any fixed dimension d .

- Regions become directed (hyper) graphs with edges labelled
by subsets of P × [0 . . . cmax + 1]d

- Semantics of Kleene stars?
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WIP 2: Coverability for TBPP

BPP nets: every transition consumes at most one token

- ∼ context-free controlled TPN

- Coverability

- in PSPACE for all d
(lossy semantics ; witnesses visit only small regions)

- conjecture: NP-complete for d = 1

- Reachability:

- 1st step: bound ”time to kill” a region?
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thank you.
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