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Membership problem

Input: A finite collection of matrices M1, . . . ,Mn and M .

Question: Does M belong to 〈M1, . . . ,Mn〉, that is, does there
exist a sequence of indices i1, . . . , ik ∈ {1, . . . , n} such that

M = Mi1Mi2 · · ·Mik?

Mortality problem

Input: A finite collection of matrices M1, . . . ,Mn.

Question: Does O belong to 〈M1, . . . ,Mn〉?
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Known results

Mortality problem (and hence the membership problem) is
algorithmically undecidable for 3× 3 integer matrices.
[Paterson, 1970]

Membership problem is decidable in PTIME for commuting
matrices (over algebraic numbers) [Babai, et al., 1996]

It is a long standing open question whether the membership
problem is decidable for 2× 2 matrices (even over integers).
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Known results

The membership problem is decidable for 2× 2 integer
matrices with determinant ±1.
[C. Choffrut and J. Karhumäki, 2005]

The membership problem is decidable for 2× 2 nonsingular
integer matrices.
[P. Semukhin and I. Potapov, 2017]

The membership problem is decidable for 2× 2 integer
matrices with determinant 0,±1.
[P. Semukhin and I. Potapov, 2017]

It is an open question whether the Membership or Mortality
problem is decidable for all 2× 2 integer matrices.
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The membership problem is decidable for 2× 2 nonsingular
integer matrices.
[P. Semukhin and I. Potapov, 2017]

The membership problem is decidable for 2× 2 integer
matrices with determinant 0,±1.
[P. Semukhin and I. Potapov, 2017]

It is an open question whether the Membership or Mortality
problem is decidable for all 2× 2 integer matrices.

Pavel Semukhin Mortality problem for bounded languages and LRS



Mortality Problem for bounded languages

Given matrices A1, . . . , An, decide whether there exist
k1, . . . , kn ∈ N such that

Ak1
1 Ak2

2 · · ·A
kn
n = O

By an encoding of Hilbert’s tenth problem, it was shown that there
exist n and d such that the above problem is undecidable
for n matrices of size d× d with integer coefficients.
[P. Bell, et al., 2008]
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Linear Recurrence Sequences and Skolem’s Problem

(un)
∞
n=0 is called a linear recurrence sequence (LRS) of depth k if

there exist constants a1, . . . , ak (with ak 6= 0) such that for all
n ≥ 0

un+k = a1un+k−1 + a2un+k−2 + · · ·+ akun

Fibonacci sequence

The sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . satisfies the recurrence
relation un+2 = un+1 + un.

Z(un) = {n ∈ N : un = 0} is called the zero set of (un)
∞
n=0.

Skolem’s Problem

Given a LRS (un)
∞
n=0, decide whether Z(un) is non-empty.
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Linear Recurrence Sequences and Skolem’s Problem

Theorem (Mignotte, Shorey, Tijdeman’84 and Vereshchagin’85)

The Skolem Problem is decidable for LRS of depth 3 over algebraic
numbers and for LRS of depth 4 over real algebraic numbers.

Theorem (Skolem-Mahler-Lech)

For any LRS (un)
∞
n=0 over algebraic numbers, its zero set Z(un) is

semilinear, that is,

Z(un) = F ∪ {b1 +mN} ∪ · · · ∪ {bt +mN}

where F is a finite set and b1, . . . , bt,m ∈ N. Moreover b1, . . . , bt
and m can be computed from a presentation of (un)

∞
n=0.
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Mortality Problem over bounded languages

ABC problem: given three square matrices A, B and C, decide
whether there exists m,n, ` ∈ N such that AmBnC` = O.

Let F denote one of the following fields: Q (rational numbers),
A (algebraic numbers) AR (real algebraic numbers).

Theorem

The ABC problem for matrices of size k × k with coefficients from
F is equivalent to the Skolem problem for LRS of depth k over F .

Corollary

The ABC problem is decidable for 2× 2 and 3× 3 matrices over
algebraic numbers and for matrices of size 4× 4 over real algebraic
numbers.
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ABC problem: AmBnC` = O

The following are equivalent:

(un)
∞
n=0 is a LRS of depth k

There is a k × k matrix B and k-dimensional vector v and w
such that ∀n ≥ 0 un = v>Bnw.

Proposition

If AmBnC` = O for some m,n, ` ∈ N, then ABnC = O.

True only if the JNF of A and B do not contain nilpotent Jordan

blocks of the form

0 1 0
0 0 1
0 0 0
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ABC problem

Theorem

Let U = {(m,n, `) ∈ N3 : AmBnC` = O}.

If the JNF of A and C do not contain nilpotent Jordan blocks,
then U = N× S × N, where S is a semilinear set.

In general,

U =

N⋃
i=1

Si
1 × Si

2 × Si
3

where Si
j are semilinear sets.
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ABCD problem

ABCD problem: decide if there exist k,m, n, ` ∈ N such that

AkBmCnD` = O

Non-semilinear solutions(
1 −1
0 0

)k(
1 0
0 2

)m(
1 1
0 1

)n(
0 0
0 1

)`

=

(
0 0
0 0

)
This equation holds iff n = 2m and k, ` ∈ N are arbitrary.
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ABCD problem: AkBmCnD` = O

Theorem

ABCD problem is decidable for 2× 2 rational upper-triangular
matrices.

Our proof relies of the following result: Let T = {p1, . . . , pt} be a
finite collection of primes.

Let S be the set of rational numbers that can be expressed as
products of primes from T (with positive or negative powers).
Consider the equation

x+ y = 1 where x, y ∈ S

This equation has only finitely many solutions which can be
algorithmically found.

This result relies on Baker’s theorem about linear forms in
logarithms of algebraic numbers.
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Summary

The ABC problem is decidable for 2× 2 and 3× 3 matrices
over algebraic numbers.

The ABC problem is decidable for 4× 4 matrices over real
algebraic numbers.

The ABCD problem is decidable for 2× 2 upper-triangular
rational matrices.

U = {(m,n, `) ∈ N3 : AmBnC` = O} is a finite union of
direct products of semilinear sets.

THANK YOU!
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