Reachability Problems in Nondeterministic Polynomial Maps on the Integers

Sang-Ki Ko¹ Reino Niskanen² Igor Potapov³

¹Korea Electronics Technology Institute, South Korea ²Department of Computer Science, University of Oxford, UK ³Department of Computer Science, University of Liverpool, UK

DLT 2018, Tokyo

Reachability in Iterative Maps

• Consider an iterative map:

$$\overline{\mathbf{x}}_{n+1} = f(\overline{\mathbf{x}}_n)$$

Reachability in Iterative Maps

• Consider an iterative map:

$$\overline{\mathbf{x}}_{n+1} = f(\overline{\mathbf{x}}_n)$$

• **Reachability problem:** Decide whether $\overline{\mathbf{y}}$ is reachable from $\overline{\mathbf{x}}_0$ following a finite number of iterations, namely,

$$\exists k \in \mathbb{N}, \quad \overline{\mathbf{y}} = f^k(\overline{\mathbf{x}}_0)$$

Reachability in Iterative Maps

• Consider an iterative map:

$$\overline{\mathbf{x}}_{n+1} = f(\overline{\mathbf{x}}_n)$$

• **Reachability problem:** Decide whether \overline{y} is reachable from \overline{x}_0 following a finite number of iterations, namely,

$$\exists k \in \mathbb{N}, \quad \overline{\mathbf{y}} = f^k(\overline{\mathbf{x}}_0)$$

- The complexity could vary depending on the factors such as
 - the type of iterative functions (i.e., affine, linear, polynomial, elementary, etc.),
 - the form of maps (i.e., deterministic, nondeterministic),
 - the number of variables (i.e., dimension of a system), and
 - even history dependence (i.e., when the next value depends on several previous values of counters/variables).

Termination of a generic program with a loop:

while (conditions) { commands }

is undecidable.

Termination of a generic program with a loop:

while (conditions) { commands }

is undecidable.

With an affine function

Let's consider termination of the following simple program:

while $(x \neq t) \{ x \leftarrow ax + b \}$

Termination of a generic program with a loop:

while (conditions) { commands }

is undecidable.

With a polynomial function

Let's consider termination of the following simple program:

while $(x \neq t) \{ x \leftarrow ax^2 + bx + c \}$

Termination of a generic program with a loop:

while (conditions) { commands }

is undecidable.

With two independent variables

Let's consider termination of the following simple program:

while (
$$x \neq t_1$$
 and $y \neq t_2$) {
 $x \leftarrow ax^2 + bx + c$
 $y \leftarrow dy + e$

Ko, Niskanen, and Potapov

Termination of a generic program with a loop:

while (conditions) { commands }

is undecidable.

With dependency between variables

Let's consider termination of the following simple program:

while (
$$x \neq t_1$$
 and $y \neq t_2$) {
 $x \leftarrow ax^2 + by + c$
 $y \leftarrow dy + e$

Termination of a generic program with a loop:

while (conditions) { commands }

is undecidable.

With nondeterminism

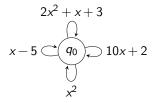
Let's consider termination of the following simple program:

while
$$(x \neq t_1 \text{ and } y \neq t_2) \{$$

 $x \leftarrow ax^2 + by + c \text{ or } x \leftarrow ax + b$
 $y \leftarrow dy + e$

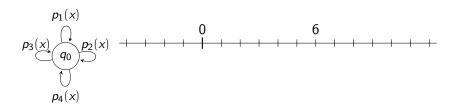
Definition (Nondeterministic polynomial map)

- Q is a singleton set and
- $\Delta \subseteq \mathbb{Z}[\overline{\mathbf{x}}]^n$ is a finite set of transitions labelled by polynomials with variable $\overline{\mathbf{x}} \in \mathbb{Z}^n$.



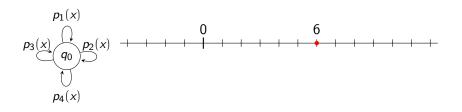
Definition (Nondeterministic polynomial map)

- Q is a singleton set and
- $\Delta \subseteq \mathbb{Z}[\overline{\mathbf{x}}]^n$ is a finite set of transitions labelled by polynomials with variable $\overline{\mathbf{x}} \in \mathbb{Z}^n$.



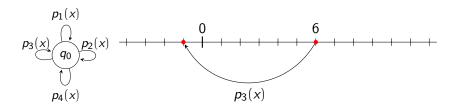
Definition (Nondeterministic polynomial map)

- Q is a singleton set and
- $\Delta \subseteq \mathbb{Z}[\overline{\mathbf{x}}]^n$ is a finite set of transitions labelled by polynomials with variable $\overline{\mathbf{x}} \in \mathbb{Z}^n$.



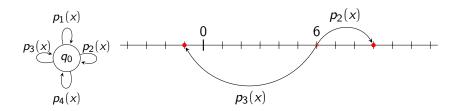
Definition (Nondeterministic polynomial map)

- Q is a singleton set and
- $\Delta \subseteq \mathbb{Z}[\overline{\mathbf{x}}]^n$ is a finite set of transitions labelled by polynomials with variable $\overline{\mathbf{x}} \in \mathbb{Z}^n$.



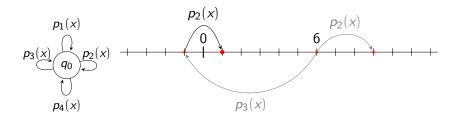
Definition (Nondeterministic polynomial map)

- Q is a singleton set and
- $\Delta \subseteq \mathbb{Z}[\overline{\mathbf{x}}]^n$ is a finite set of transitions labelled by polynomials with variable $\overline{\mathbf{x}} \in \mathbb{Z}^n$.



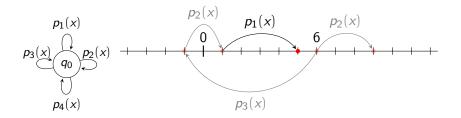
Definition (Nondeterministic polynomial map)

- Q is a singleton set and
- $\Delta \subseteq \mathbb{Z}[\overline{\mathbf{x}}]^n$ is a finite set of transitions labelled by polynomials with variable $\overline{\mathbf{x}} \in \mathbb{Z}^n$.



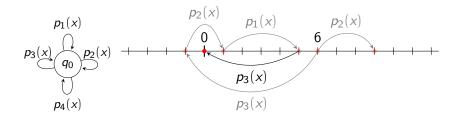
Definition (Nondeterministic polynomial map)

- Q is a singleton set and
- $\Delta \subseteq \mathbb{Z}[\overline{\mathbf{x}}]^n$ is a finite set of transitions labelled by polynomials with variable $\overline{\mathbf{x}} \in \mathbb{Z}^n$.



Definition (Nondeterministic polynomial map)

- Q is a singleton set and
- $\Delta \subseteq \mathbb{Z}[\overline{\mathbf{x}}]^n$ is a finite set of transitions labelled by polynomials with variable $\overline{\mathbf{x}} \in \mathbb{Z}^n$.

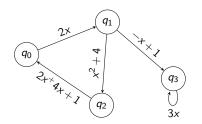


Polynomial Register Machine (PRM)

Definition (Polynomial register machine)

An *n*-dimensional polynomial register machine (*n*-PRM) is a tuple $\mathcal{R} = (Q, \Delta)$, where

- Q is a finite set of states and
- $\Delta \subseteq Q \times \mathbb{Z}[\overline{\mathbf{x}}]^n \times Q$ is a finite set of transitions labelled by polynomials with variable $\overline{\mathbf{x}} \in \mathbb{Z}^n$.



Class of Polynomials

Definition

Additive polynomials: Affine polynomials:

Quadratic polynomials:

$$\begin{aligned} \mathsf{Add}_{\mathbb{Z}} &= \{ \pm x + b \mid b \in \mathbb{Z} \}, \\ \mathsf{Aff}_{\mathbb{Z}}[x] &= \{ ax + b \mid a, b \in \mathbb{Z} \}, \\ \mathsf{Quad}_{\mathbb{Z}}[x] &= \{ ax^2 + bx + c \mid a, b, c \in \mathbb{Z} \}. \end{aligned}$$

$$a_n x^n + \ldots + \overbrace{a_2 x^2 + \underbrace{a_1 x + a_0}_{\in Aff_{\mathbb{Z}}[x]}}^{\in Quad_{\mathbb{Z}}[x]} \in \mathbb{Z}[x] \qquad \pm x + a_0 \in Add_{\mathbb{Z}}$$

Class of Polynomials

Definition

Additive polynomials: Affine polynomials:

Quadratic polynomials:

$$\begin{aligned} \mathsf{Add}_{\mathbb{Z}} &= \{ \pm x + b \mid b \in \mathbb{Z} \}, \\ \mathsf{Aff}_{\mathbb{Z}}[x] &= \{ ax + b \mid a, b \in \mathbb{Z} \}, \\ \mathsf{Quad}_{\mathbb{Z}}[x] &= \{ ax^2 + bx + c \mid a, b, c \in \mathbb{Z} \}. \end{aligned}$$

Definition (Polynomials without additive polynomials)

$$\begin{split} \mathsf{Aff}_{\mathbb{Z}}[x] \setminus \mathsf{Add}_{\mathbb{Z}} &= \{ax + b \in \mathsf{Aff}_{\mathbb{Z}}[x] \mid a \neq \pm 1\}, \\ \mathbb{Z}[x] \setminus \mathsf{Add}_{\mathbb{Z}} &= \{p(x) \in \mathbb{Z}[x] \mid p(x) \neq \pm x + b, \text{ where } b \in \mathbb{Z}\}. \end{split}$$

- The additive form (i.e., $\overline{\mathbf{x}} \leftarrow \overline{\mathbf{x}} + \overline{\mathbf{b}}$) of a map with polynomial updates can be seen as a vector addition systems on \mathbb{Z}^n .
 - If *n* = 1, the reachability problem can be reduced to the solution of a single linear Diophantine equation over natural numbers.
 - Otherwise, the problem is in the form of the *n*-dimensional VAS on \mathbb{Z}^n .

- The additive form (i.e., $\overline{\mathbf{x}} \leftarrow \overline{\mathbf{x}} + \overline{\mathbf{b}}$) of a map with polynomial updates can be seen as a vector addition systems on \mathbb{Z}^n .
 - If *n* = 1, the reachability problem can be reduced to the solution of a single linear Diophantine equation over natural numbers.
 - Otherwise, the problem is in the form of the *n*-dimensional VAS on \mathbb{Z}^n .
- Bell & Potapov showed that with seven 2-d affine updates of the form

$$\begin{cases} x \leftarrow ax + by + c \\ y \leftarrow dy + e \end{cases}$$
, (variables are not independent, stateless)

the reachability problem is undecidable over \mathbb{Q}^2 . [TCS 2008]

- Finkel et al. [MFCS 2013] considered that the reachability problem for polynomial register machines (with states) on \mathbb{Z}^n ,
 - PSPACE-complete for 1-d polynomials and
 - undecidable for 2-d polynomials with independent variables.

- Finkel et al. [MFCS 2013] considered that the reachability problem for polynomial register machines (with states) on \mathbb{Z}^n ,
 - PSPACE-complete for 1-d polynomials and
 - undecidable for 2-d polynomials with independent variables.
- Niskanen [RP 2017] showed that the reachability problem is
 - PSPACE-complete in 1-d polynomial maps of degree four and
 - undecidable in 3-d polynomial maps. (stateless)

In the three-dimensional variant, we are investigating functions of the form

$$\begin{cases} x_1 \leftarrow a_1 x_1 + b_1 \\ x_2 \leftarrow a_2 x_2 + b_2 \\ x_3 \leftarrow a_3 x_3 + b_3 \end{cases} , \text{ where } a_i, b_i \in \mathbb{Z}.$$

(4) (2) (4) (4) (4)

In the three-dimensional variant, we are investigating functions of the form

$$\begin{cases} x_1 \leftarrow a_1 x_1 + b_1 \\ x_2 \leftarrow a_2 x_2 + b_2 \\ x_3 \leftarrow a_3 x_3 + b_3 \end{cases}, \text{ where } a_i, b_i \in \mathbb{Z}.$$

First, we will show that

- \bullet The reachability problem for $\text{Aff}_{\mathbb{Z}}[\overline{\textbf{x}}]^3$ is undecidable and
- PSPACE-hard for $Quad_{\mathbb{Z}}[\overline{\mathbf{x}}]^2$.

The reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .

The reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .

Proof sketch.

The reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .

Proof sketch.

• Let $P = \{(u_1, v_1), \dots, (u_n, v_n)\} \subseteq \Sigma^* \times \Sigma^*$ be an instance of the PCP.

u = v =

The reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .

Proof sketch.

• Let $P = \{(u_1, v_1), \dots, (u_n, v_n)\} \subseteq \Sigma^* \times \Sigma^*$ be an instance of the PCP. $\begin{array}{c} (u_1, v_1) \\ u = & bba \\ v = & bb \end{array}$

The reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .

Proof sketch.

	(u_1, v_1)	(u_2, v_2)
u =	bba	ab
v =	bb	аа

The reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .

Proof sketch.

	(u_1, v_1)	(u_2, v_2)	(u_1, v_1)
u =	bba	ab	bba
v =	bb	аа	bb

The reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .

Proof sketch.

	(u_1, v_1)	(u_2, v_2)	(u_1, v_1)	(<i>u</i> ₃ , <i>v</i> ₃)
u =	bba	ab	bba	а
v =	bb	аа	bb	baa

The reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .

Proof sketch.

	(u_1, v_1)	(u_2, v_2)	(u_1, v_1)	(<i>u</i> ₃ , <i>v</i> ₃)
<i>u</i> =	221	12	221	1
v =	22	11	22	211

The reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .

Proof sketch.

• Let $P = \{(u_1, v_1), \dots, (u_n, v_n)\} \subseteq \Sigma^* \times \Sigma^*$ be an instance of the PCP.

	(u_1, v_1)	(u_2, v_2)	(u_1, v_1)	(<i>u</i> ₃ , <i>v</i> ₃)
u =	221	12	221	1
v =	22	11	22	211

• We can simulate concatenations with affine functions as follows:

$$3^{|u_i|}\sigma(u_j)+\sigma(u_i)=\sigma(u_ju_i).$$

Undecidability over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^3$

Proof sketch.

• We show that (0, 0, 1) is reachable from (0, 0, 0) if and only if the PCP has a solution.

- We show that (0, 0, 1) is reachable from (0, 0, 0) if and only if the PCP has a solution.
- Define the following sets of affine functions in dimension three:

•
$$F_1 = \{(3^{|u_i|}x_1 + \sigma(u_i), 3^{|v_i|}x_2 + \sigma(v_i), 2x_3) \mid (u_i, v_i) \in P \text{ for all } 1 \leq i \leq n\},$$

•
$$F_2 = \{(3^{|u_i|}x_1 + \sigma(u_i), 3^{|v_i|}x_2 + \sigma(v_i), 2x_3 + 1) \mid (u_i, v_i) \in P \text{ for all } 1 \leq i \leq n\},\$$

•
$$F_3 = \{(x_1 - 1, x_2 - 1, \frac{2x_3 - 1}{3})\}$$

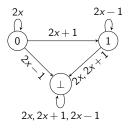
Proof sketch.

- We show that (0,0,1) is reachable from (0,0,0) if and only if the PCP has a solution.
- Define the following sets of affine functions in dimension three:

•
$$F_1 = \{(3^{|u_i|}x_1 + \sigma(u_i), 3^{|v_i|}x_2 + \sigma(v_i), 2x_3) \mid (u_i, v_i) \in P \text{ for all } 1 \leq i \leq n\},$$

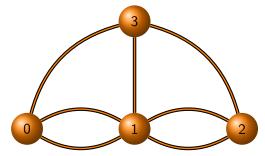
• $F_2 = \{(3^{|u_i|}x_1 + \sigma(u_i), 3^{|v_i|}x_2 + \sigma(v_i), 2x_3 + 1) \mid (u_i, v_i) \in P \text{ for all } 1 \leq i \leq n\},\$

•
$$F_3 = \{(x_1 - 1, x_2 - 1, \frac{2x_3 - 1}{2})\}.$$



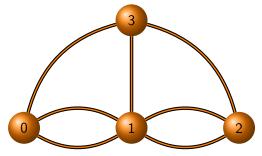
Simulating State Structure with Affine Functions

• Let's take an any graph for example as follows:



Simulating State Structure with Affine Functions

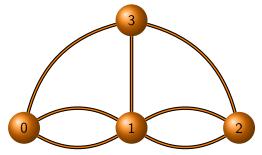
• Let's take an any graph for example as follows:



• For each edge (v_i, v_j) (possibly i = j) of G, we add an affine polynomial $f_{ij}(x) = m(x - i) + j$ to the map.

Simulating State Structure with Affine Functions

• Let's take an any graph for example as follows:



- For each edge (v_i, v_j) (possibly i = j) of G, we add an affine polynomial $f_{ij}(x) = m(x i) + j$ to the map.
- For example, let us try with $f_{03}(x) = 4x + 3$ and $f_{21}(x) = 4(x-2) + 1$.

The reachability problem for nondeterministic maps over $Quad_{\mathbb{Z}}[\overline{x}]^2$ is PSPACE-hard.

The reachability problem for nondeterministic maps over $Quad_{\mathbb{Z}}[\overline{x}]^2$ is PSPACE-hard.

Proof sketch.

• Let $\mathcal{R} = (Q, \Delta)$, where $Q = \{q_0, \dots, q_{m-1}\}$, be a one-dimensional PRM with PSPACE-hard reachability problem.

The reachability problem for nondeterministic maps over $Quad_{\mathbb{Z}}[\overline{x}]^2$ is PSPACE-hard.

- Let $\mathcal{R} = (Q, \Delta)$, where $Q = \{q_0, \dots, q_{m-1}\}$, be a one-dimensional PRM with PSPACE-hard reachability problem.
- Note that the update polynomials of ${\mathcal R}$ are **quadratic**.

The reachability problem for nondeterministic maps over $Quad_{\mathbb{Z}}[\overline{x}]^2$ is PSPACE-hard.

- Let $\mathcal{R} = (Q, \Delta)$, where $Q = \{q_0, \ldots, q_{m-1}\}$, be a one-dimensional PRM with PSPACE-hard reachability problem.
- Note that the update polynomials of ${\mathcal R}$ are **quadratic**.
- For each transition $(q_i, p(x), q_j)$ of \mathcal{R} , we add two-dimensional function $(p(x), m \cdot x + j m \cdot i)$ to the map.

The reachability problem for nondeterministic maps over $Quad_{\mathbb{Z}}[\overline{x}]^2$ is PSPACE-hard.

- Let $\mathcal{R} = (Q, \Delta)$, where $Q = \{q_0, \dots, q_{m-1}\}$, be a one-dimensional PRM with PSPACE-hard reachability problem.
- Note that the update polynomials of ${\mathcal R}$ are **quadratic**.
- For each transition $(q_i, p(x), q_j)$ of \mathcal{R} , we add two-dimensional function $(p(x), m \cdot x + j m \cdot i)$ to the map.
- It is clear that (0, k) is reachable from $(0, \ell)$ if and only if $[q_{\ell}, 0] \rightarrow_{\mathcal{R}}^{*} [q_{k}, 0]$.

• Let's consider a restricted class of maps over $Aff_{\mathbb{Z}}[x]$, in the sense that every affine function in the map is not of the form $\pm x + b$.

DLT 2018 12 / 27

- Let's consider a restricted class of maps over $Aff_{\mathbb{Z}}[x]$, in the sense that every affine function in the map is not of the form $\pm x + b$.
- It is easy to see that the reachability problem for maps over Aff_ℤ[x̄]ⁿ is NP-hard by reduction to the Subset Sum Problem (SSP).

- Let's consider a restricted class of maps over $Aff_{\mathbb{Z}}[x]$, in the sense that every affine function in the map is not of the form $\pm x + b$.
- It is easy to see that the reachability problem for maps over Aff_ℤ[x̄]ⁿ is NP-hard by reduction to the Subset Sum Problem (SSP).
- The NP-hardness proof relies on the use of polynomials of the form x + b that correspond to integers in the SSP.

- Let's consider a restricted class of maps over $Aff_{\mathbb{Z}}[x]$, in the sense that every affine function in the map is not of the form $\pm x + b$.
- It is easy to see that the reachability problem for maps over Aff_Z[x]ⁿ is NP-hard by reduction to the Subset Sum Problem (SSP).
- The NP-hardness proof relies on the use of polynomials of the form x + b that correspond to integers in the SSP.

Question

Does the NP-hardness still hold over the restricted class of maps over $Aff_{\mathbb{Z}}[x] \setminus Add_{\mathbb{Z}}$?

The reachability problem for maps over $Aff_{\mathbb{Z}}[x] \setminus Add_{\mathbb{Z}}$ is NP-hard.

The reachability problem for maps over $Aff_{\mathbb{Z}}[x] \setminus Add_{\mathbb{Z}}$ is NP-hard.

Proof sketch.

• Let (S, s) be an instance of the SSP, where $S = \{s_1, \ldots, s_k, \}$ and s is the target integer.

The reachability problem for maps over $Aff_{\mathbb{Z}}[x] \setminus Add_{\mathbb{Z}}$ is NP-hard.

Proof sketch.

- Let (S, s) be an instance of the SSP, where $S = \{s_1, \ldots, s_k, \}$ and s is the target integer.
- We construct the set of affine functions

$$F = \{n \cdot x + n^{i-1} \cdot s_i, n \cdot x \mid 1 \leq i \leq k\}$$

with target $s \cdot n^{k-1}$, where $n > \max(S) \cdot |S|$ is a prime.

The reachability problem for maps over $Aff_{\mathbb{Z}}[x] \setminus Add_{\mathbb{Z}}$ is NP-hard.

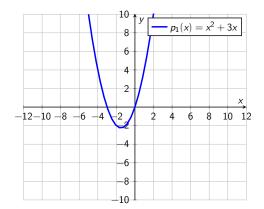
Proof sketch.

- Let (S, s) be an instance of the SSP, where $S = \{s_1, \ldots, s_k, \}$ and s is the target integer.
- We construct the set of affine functions

$$F = \{n \cdot x + n^{i-1} \cdot s_i, n \cdot x \mid 1 \leq i \leq k\}$$

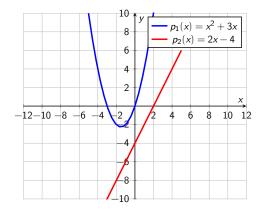
with target $s \cdot n^{k-1}$, where $n > \max(S) \cdot |S|$ is a prime.

• The map reaches $s \cdot n^{k-1}$ if and only if there is a subset of S such that its elements add up to s.



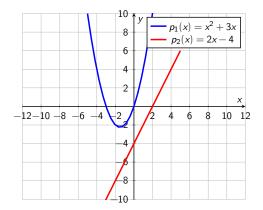
<E> ■ つへで DLT 2018 14/27

▲ □ ▶ ▲ 三 ▶ ▲



<E> ■ つへで DLT 2018 14/27

< 回 ト < 三 ト < 三



Observation

There exists a bound $b \in \mathbb{N}$ such that every polynomial in $\mathbb{Z}[x] \setminus \operatorname{Add}_{\mathbb{Z}}$ is monotonically increasing or decreasing in $\mathbb{Z} \setminus [-b, b]$.

Ko, Niskanen, and Potapov

Reachability in Polynomial Maps on $\ensuremath{\mathbb{Z}}$

DLT 2018 14 / 27

Theorem

The reachability problem for maps over $\mathbb{Z}[\bar{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is decidable in *PSPACE* for any $n \ge 1$.

Theorem

The reachability problem for maps over $\mathbb{Z}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is decidable in *PSPACE* for any $n \ge 1$.

Proof sketch.

• Let z be the target integer.

Theorem

The reachability problem for maps over $\mathbb{Z}[\bar{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is decidable in *PSPACE* for any $n \ge 1$.

- Let z be the target integer.
- We can compute the bound *b* which is polynomial in size of the input.

The reachability problem for maps over $\mathbb{Z}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is decidable in *PSPACE* for any $n \ge 1$.

- Let z be the target integer.
- We can compute the bound *b* which is polynomial in size of the input.
- If |z| ≤ b, we can decide whether the integer z is reachable in PSPACE by applying the given functions since we can store the current value and the computation path in space polynomial in b.

The reachability problem for maps over $\mathbb{Z}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is decidable in *PSPACE* for any $n \ge 1$.

- Let z be the target integer.
- We can compute the bound *b* which is polynomial in size of the input.
- If |z| ≤ b, we can decide whether the integer z is reachable in PSPACE by applying the given functions since we can store the current value and the computation path in space polynomial in b.
- Otherwise, due to monotonicity properties of $\mathbb{Z}[x] \setminus \text{Add}_{\mathbb{Z}}$ functions, we do not need to consider the integers outside the interval [-z, z].

The reachability problem for nondeterministic maps over $Aff_{\mathbb{Q}}[\overline{x}]^3 \setminus Add_{\mathbb{Q}}$ is undecidable with at least 11 affine functions over \mathbb{Q} .

The reachability problem for nondeterministic maps over $Aff_{\mathbb{Q}}[\bar{\mathbf{x}}]^3 \setminus Add_{\mathbb{Q}}$ is undecidable with at least 11 affine functions over \mathbb{Q} .

Proof sketch.

• Let *P* be an instance of the PCP with *n* elements.

The reachability problem for nondeterministic maps over $Aff_{\mathbb{Q}}[\mathbf{x}]^3 \setminus Add_{\mathbb{Q}}$ is undecidable with at least 11 affine functions over \mathbb{Q} .

- Let P be an instance of the PCP with n elements.
- For each pair $(u_i, v_i) \in P$, where $1 \le i \le n$, we define the following sets of affine functions in dimension three:

$$\begin{array}{l} \textbf{(3}^{|u_i|} \cdot x_1 + \sigma(u_i), (n+1) \cdot x_2 + i, 2 \cdot x_3) \in F_1 \text{ for all } 1 \leqslant i \leqslant n, \\ \textbf{(2)} \quad (3^{|u_i|} \cdot x_1 + \sigma(u_i), (n+1) \cdot x_2 + i, 2 \cdot x_3 + 1) \in F_2 \text{ for some } 1 \leqslant i \leqslant n, \text{ and} \\ \textbf{(3)} \quad \left(\frac{1}{3^{|v_i|}} \cdot (x_1 - \sigma(v_i)), \frac{1}{n+1} \cdot (x_2 - i), 2 \cdot x_3 - 1\right) \in F_3 \text{ for all } 1 \leqslant i \leqslant n. \end{array}$$

The reachability problem for nondeterministic maps over $Aff_{\mathbb{Q}}[\mathbf{x}]^3 \setminus Add_{\mathbb{Q}}$ is undecidable with at least 11 affine functions over \mathbb{Q} .

Proof sketch.

- Let P be an instance of the PCP with n elements.
- For each pair (u_i, v_i) ∈ P, where 1 ≤ i ≤ n, we define the following sets of affine functions in dimension three:

$$\begin{array}{l} (3^{|u_i|} \cdot x_1 + \sigma(u_i), (n+1) \cdot x_2 + i, 2 \cdot x_3) \in F_1 \text{ for all } 1 \leqslant i \leqslant n, \\ (3^{|u_i|} \cdot x_1 + \sigma(u_i), (n+1) \cdot x_2 + i, 2 \cdot x_3 + 1) \in F_2 \text{ for some } 1 \leqslant i \leqslant n, \text{ and} \\ (\frac{1}{3^{|v_i|}} \cdot (x_1 - \sigma(v_i)), \frac{1}{n+1} \cdot (x_2 - i), 2 \cdot x_3 - 1) \in F_3 \text{ for all } 1 \leqslant i \leqslant n. \end{array}$$

• First construct a word $u' = u_{i_1}u_{i_2}\cdots u_{i_{k-1}}$, where $1 \leq i_j \leq n$ for all $1 \leq j \leq k-1$, in the first dimension.

The reachability problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is PSPACE-hard.

- A linear bounded automaton (LBA) is a Turing machine with a finite tape whose length is bounded by a linear function of the size of the input.
- A configuration is [q, i, w], where q ∈ Q, i is the position of the head, w ∈ {0, 1}ⁿ is the word written on the tape.

The reachability problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is PSPACE-hard.

- A linear bounded automaton (LBA) is a Turing machine with a finite tape whose length is bounded by a linear function of the size of the input.
- A configuration is [q, i, w], where q ∈ Q, i is the position of the head, w ∈ {0, 1}ⁿ is the word written on the tape.

• The reachability problem: $[q_0, 1, 0^n] \rightarrow^* [q_f, 1, 0^n]$?

Known fact The reachability problem for LBAs is PSPACE-complete. Ko, Niskanen, and Potapov Reachability in Polynomial Maps on Z DLT 2018 17/27

PSPACE-hardness over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$

Lemma

The reachability problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is PSPACE-hard.

PSPACE-hardness over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$

Lemma

The reachability problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is PSPACE-hard.

The reachability problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is PSPACE-hard.

Proof sketch.

• Reduce the reachability problem of an LBA \mathcal{A} to the reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^{k+1} \setminus Add_{\mathbb{Z}}$.

Lemma

The reachability problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is PSPACE-hard.

Proof sketch.

- Reduce the reachability problem of an LBA \mathcal{A} to the reachability problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^{k+1} \setminus Add_{\mathbb{Z}}$.
- Store the tape content of the LBA A in the first k dimensions and the current state in the last dimension of the affine map.

PSPACE-hardness over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ (continue)

Proof sketch. (continue)

• Let $[q_j, i, w]$ be the current configuration of A.

PSPACE-hardness over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ (continue)

Proof sketch. (continue)

- Let $[q_j, i, w]$ be the current configuration of A.
- Denote $w = w_1 w_2 \cdots w_k \in \{0, 1\}^k$.

Proof sketch. (continue)

- Let $[q_j, i, w]$ be the current configuration of A.
- Denote $w = w_1 w_2 \cdots w_k \in \{0, 1\}^k$.
- The corresponding register value in the affine map is as follows:

$$(\underbrace{w_1, w_2, \ldots, w_k}_k, z = (q_j, i)).$$

Proof sketch. (continue)

- Let $[q_j, i, w]$ be the current configuration of A.
- Denote $w = w_1 w_2 \cdots w_k \in \{0, 1\}^k$.
- The corresponding register value in the affine map is as follows:

$$(\underbrace{w_1, w_2, \ldots, w_k}_k, z = (q_j, i)).$$

Example

The affine function corresponding to $(q_{j_1}, 0, q_{j_2}, 1, L)$ is

$$(x, \ldots, x, 2x+1, x, \ldots, x, a \cdot x+b),$$

where $a \cdot x + b$ corresponds to the edge $((q_{j_1}, i), (q_{j_2}, i-1))$ in G_A , and 2x + 1 is in the *i*th dimension.

Ko, Niskanen, and Potapov

If the dimension n is not fixed, then the reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is PSPACE-complete.

If the dimension n is not fixed, then the reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is PSPACE-complete.

Corollary

If the dimension n is not fixed, then the reachability problem for n-ARMs and n-PRMs, where the update polynomials are not of the form $\pm x + b$, is PSPACE-complete.

If the dimension n is not fixed, then the reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is PSPACE-complete.

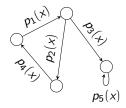
Corollary

If the dimension n is not fixed, then the reachability problem for n-ARMs and n-PRMs, where the update polynomials are not of the form $\pm x + b$, is PSPACE-complete.

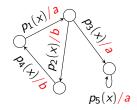
Corollary

If the dimension n is not fixed, then the reachability problem for maps over $\mathbb{Z}[\overline{\mathbf{x}}]^n \setminus Add_{\mathbb{Z}}$ is PSPACE-complete.

• Let's extend our models to operate on words.



• Let's extend our models to operate on words.



• Let's extend our models to operate on words.

$$p_{1}(x)/a$$

$$p_{3}(x)/a \xrightarrow{\bigcirc}_{1} p_{2}(x)/b$$

$$p_{4}(x)/b$$

DLT 2018 21 / 27

• Let's extend our models to operate on words.

$$p_{1}(x)/a$$

$$p_{3}(x)/a \xrightarrow{\bigcirc} p_{2}(x)/b$$

$$p_{4}(x)/b$$

• The word *w* is accepted if there is a computation path from the initial value to the target value reading *w* in the map.

• Let's extend our models to operate on words.

$$p_{1}(x)/a$$

$$p_{3}(x)/a \xrightarrow{\bigcirc}_{1} p_{2}(x)/b$$

$$p_{4}(x)/b$$

- The word *w* is accepted if there is a computation path from the initial value to the target value reading *w* in the map.
- In this context, the reachability problems of the previous sections can be seen as language emptiness problem.

• Let's extend our models to operate on words.

$$p_{1}(x)/a$$

$$p_{3}(x)/a \xrightarrow{\bigcirc}_{1} p_{2}(x)/b$$

$$p_{4}(x)/b$$

- The word *w* is accepted if there is a computation path from the initial value to the target value reading *w* in the map.
- In this context, the reachability problems of the previous sections can be seen as language emptiness problem.
- The language accepted by the map is empty if and only if the final configuration is not reachable from the initial configuration.

The universality problem for maps over $Aff_{\mathbb{Z}}[\overline{x}]^2$ is undecidable.

The universality problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^2$ is undecidable.

Proof sketch.

 Let A^γ be an integer weighted automaton over alphabet Σ for which the universality problem is undecidable [Halava & Harju, 1998].

The universality problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^2$ is undecidable.

Proof sketch.

- Let A^γ be an integer weighted automaton over alphabet Σ for which the universality problem is undecidable [Halava & Harju, 1998].
- The idea is to encode A^γ into maps in such way that the second dimension is used to simulate the state transitions of the automaton.

The universality problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^2$ is undecidable.

Proof sketch.

- Let A^γ be an integer weighted automaton over alphabet Σ for which the universality problem is undecidable [Halava & Harju, 1998].
- The idea is to encode A^γ into maps in such way that the second dimension is used to simulate the state transitions of the automaton.
- For a transition (q_i, a, q_j, z) , we construct an affine function $(a, (x_1 + z, m \cdot x_2 + j m \cdot i))$ to simulate the transition on the map.

The universality problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^2$ is undecidable.

Proof sketch.

- Let A^γ be an integer weighted automaton over alphabet Σ for which the universality problem is undecidable [Halava & Harju, 1998].
- The idea is to encode A^γ into maps in such way that the second dimension is used to simulate the state transitions of the automaton.
- For a transition (q_i, a, q_j, z) , we construct an affine function $(a, (x_1 + z, m \cdot x_2 + j m \cdot i))$ to simulate the transition on the map.
- Then, a word w ∈ Σ* is accepted by the map if and only if the register values (0, m − 1) are reachable from (0, 0) while reading word w.

• • = • • =

Definition (Reachability set of a map)

Let $F \subseteq \mathbb{Z}[\overline{\mathbf{x}}]^n$ be a map over $\mathbb{Z}[\overline{\mathbf{x}}]^n$ and let $\overline{\mathbf{x}}_0 \in \mathbb{Z}^n$ be the initial value. The *reachability set* of F is defined iteratively:

$$\begin{aligned} \mathsf{Reach}_0(F) &= \{ \overline{\mathbf{x}}_0 \}, \\ \mathsf{Reach}_i(F) &= \{ f(\overline{\mathbf{x}}) \mid \overline{\mathbf{x}} \in \mathsf{Reach}_{i-1}(F), f \in F \} \\ \mathsf{Reach}(F) &= \bigcup_{i=0}^{\infty} \mathsf{Reach}_i(F). \end{aligned}$$

Definition (Reachability set of a map)

Let $F \subseteq \mathbb{Z}[\overline{\mathbf{x}}]^n$ be a map over $\mathbb{Z}[\overline{\mathbf{x}}]^n$ and let $\overline{\mathbf{x}}_0 \in \mathbb{Z}^n$ be the initial value. The *reachability set* of F is defined iteratively:

$$\begin{aligned} \mathsf{Reach}_0(F) &= \{\overline{\mathbf{x}}_0\},\\ \mathsf{Reach}_i(F) &= \{f(\overline{\mathbf{x}}) \mid \overline{\mathbf{x}} \in \mathsf{Reach}_{i-1}(F), f \in F\},\\ \mathsf{Reach}(F) &= \bigcup_{i=0}^{\infty} \mathsf{Reach}_i(F). \end{aligned}$$

Lemma

Let F and G be two-dimensional affine maps. It is undecidable whether the intersection of the respective reachability sets is empty or not.

Ko, Niskanen, and Potapov

Reachability in Polynomial Maps on $\ensuremath{\mathbb{Z}}$

DLT 2018 23 / 27

Definition (Reachability set of a map)

Let $F \subseteq \mathbb{Z}[\overline{\mathbf{x}}]^n$ be a map over $\mathbb{Z}[\overline{\mathbf{x}}]^n$ and let $\overline{\mathbf{x}}_0 \in \mathbb{Z}^n$ be the initial value. The *reachability set* of F is defined iteratively:

$$\begin{aligned} \mathsf{Reach}_0(F) &= \{\overline{\mathbf{x}}_0\},\\ \mathsf{Reach}_i(F) &= \{f(\overline{\mathbf{x}}) \mid \overline{\mathbf{x}} \in \mathsf{Reach}_{i-1}(F), f \in F\},\\ \mathsf{Reach}(F) &= \bigcup_{i=0}^{\infty} \mathsf{Reach}_i(F). \end{aligned}$$

Theorem

Let $F, G \subseteq \Sigma \times Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^2$ and $\overline{\mathbf{x}}_{0_F}, \overline{\mathbf{x}}_{0_G}$ and $\overline{\mathbf{x}}_{f_F}, \overline{\mathbf{x}}_{f_G}$ be the respective initial and target values. It is undecidable whether the intersection of the respective languages is empty.

Ko, Niskanen, and Potapov

Reachability in Polynomial Maps on $\ensuremath{\mathbb{Z}}$

DLT 2018 23 / 27

• Complexity of reachability problems in nondeterministic polynomial maps according to the degrees.

	1		2	3	4
degree	the leading coefficient				
dim.	$a_1=\pm 1$	$a_1\in\mathbb{Z}$			
1		NP-h. [2]/	PSPACE	[1] ²	PSPACE-c. [<mark>3</mark>] ³
2	NP-c. [2] ¹	NP-h. [2]/?	PSPACE	E-h./?	PSPACE-h. [3]/?
3		undecid.			undecid. [3]

¹[2] Haase and Halfon. "Integer Vector Addition Systems with States". RP 2014.

²[1] Finkel, Göller, and Haase. "Reachability in Register Machines with Polynomial Updates". *MFCS 2013.*

³[3] Niskanen. "Reachability problem for polynomial iteration is PSPACE-complete". *RP* 2017.

Complexity Landscape from Different View

• Complexity of reachability problems in affine and polynomial maps with respect to inclusion of polynomials of the form $\pm x + b$.

type	affine		polynomial	
dim.	$a_1 eq \pm 1$	$a_1\in\mathbb{Z}$	$a_1 eq \pm 1$	$a_1\in\mathbb{Z}$
1		NP-h. [2]/PSPACE [1]		PSPACE-c. [3]
2		NP-h. [<mark>2</mark>]/?		PSPACE-h. [3]/?
3	NP-h./PSPACE		NP-h./PSPACE	
:		undecid.		undecid. [3]
п	PSPACE-c.		PSPACE-c.	

Complexity Landscape from Different View

• Complexity of reachability problems in affine and polynomial maps with respect to inclusion of polynomials of the form $\pm x + b$.

type	affine		polynomial		
dim.	$a_1 eq \pm 1$	$a_1\in\mathbb{Z}$	$a_1 eq \pm 1$	$a_1\in\mathbb{Z}$	
1		NP-h. [2]/PSPACE [1]		PSPACE-c. [3]	
2		NP-h. [2]/?		PSPACE-h. [3]/?	
3	NP-h./PSPACE		NP-h./PSPACE		
:		undecid.		undecid. [3]	
n	PSPACE-c.		PSPACE-c.		

Our goal was also to

Investigate the effect of polynomials of the form $\pm x + b$ on the decidability and complexity of the reachability problems!

DLT 2018 25 / 27

Summary

• The reachability problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .

Summary

- The reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{x}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .
- If the dimension n is not fixed, then the reachability problem for maps over Aff_ℤ[x̄]ⁿ \ Add_ℤ is PSPACE-complete.

Summary

- The reachability problem for maps over $Aff_{\mathbb{Z}}[\bar{x}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .
- If the dimension n is not fixed, then the reachability problem for maps over Aff_ℤ[x̄]ⁿ \ Add_ℤ is PSPACE-complete.
- The universality problem for maps over $\mathsf{Aff}_{\mathbb{Z}}[\overline{\mathbf{x}}]^2$ is undecidable.

Summary

- The reachability problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .
- If the dimension n is not fixed, then the reachability problem for maps over Aff_ℤ[x̄]ⁿ \ Add_ℤ is PSPACE-complete.
- \bullet The universality problem for maps over $\text{Aff}_{\mathbb{Z}}[\overline{\textbf{x}}]^2$ is undecidable.
- It is undecidable whether or not the intersection of the languages accepted by two-dimensional affine maps is empty.

Summary

- The reachability problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .
- If the dimension n is not fixed, then the reachability problem for maps over Aff_ℤ[x̄]ⁿ \ Add_ℤ is PSPACE-complete.
- The universality problem for maps over $Aff_{\mathbb{Z}}[\overline{x}]^2$ is undecidable.
- It is undecidable whether or not the intersection of the languages accepted by two-dimensional affine maps is empty.

Open problems

• Complexity of the reachability problem for affine maps?

DLT 2018 26/27

< 1[™] ▶

Summary

- The reachability problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .
- If the dimension n is not fixed, then the reachability problem for maps over Aff_ℤ[x̄]ⁿ \ Add_ℤ is PSPACE-complete.
- The universality problem for maps over $\mathsf{Aff}_{\mathbb{Z}}[\overline{\mathbf{x}}]^2$ is undecidable.
- It is undecidable whether or not the intersection of the languages accepted by two-dimensional affine maps is empty.

Open problems

- Complexity of the reachability problem for affine maps?
- Decidability of the reachability problem for 2-D affine maps?

DLT 2018 26 / 27

< 111 ▶

Summary

- The reachability problem for maps over $Aff_{\mathbb{Z}}[\overline{\mathbf{x}}]^3$ is undecidable with at least 7 affine functions over \mathbb{Z} .
- If the dimension n is not fixed, then the reachability problem for maps over Aff_ℤ[x̄]ⁿ \ Add_ℤ is PSPACE-complete.
- \bullet The universality problem for maps over $\text{Aff}_{\mathbb{Z}}[\overline{\textbf{x}}]^2$ is undecidable.
- It is undecidable whether or not the intersection of the languages accepted by two-dimensional affine maps is empty.

Open problems

- Complexity of the reachability problem for affine maps?
- Decidability of the reachability problem for 2-D affine maps?
- Decidability of the reachability problem for 2-D polynomial maps?

DLT 2018 26 / 27

(日)

